
- <Centre d'Information et de documentation du CRA Rhône-Alpes
- CRA
- Informations pratiques
-
Adresse
Centre d'information et de documentation
Horaires
du CRA Rhône-Alpes
Centre Hospitalier le Vinatier
bât 211
95, Bd Pinel
69678 Bron CedexLundi au Vendredi
Contact
9h00-12h00 13h30-16h00Tél: +33(0)4 37 91 54 65
Mail
Fax: +33(0)4 37 91 54 37
-
Adresse
Détail de l'auteur
Auteur Hakon HAKONARSON |
Documents disponibles écrits par cet auteur (8)



An X chromosome-wide association study in autism families identifies TBL1X as a novel autism spectrum disorder candidate gene in males / Ren-Hua CHUNG in Molecular Autism, (November 2011)
![]()
[article]
Titre : An X chromosome-wide association study in autism families identifies TBL1X as a novel autism spectrum disorder candidate gene in males Type de document : Texte imprimé et/ou numérique Auteurs : Ren-Hua CHUNG, Auteur ; Deqiong MA, Auteur ; Kai WANG, Auteur ; Dale HEDGES, Auteur ; James M. JAWORSKI, Auteur ; John R. GILBERT, Auteur ; Michael L. CUCCARO, Auteur ; Harry H. WRIGHT, Auteur ; Ruth K. ABRAMSON, Auteur ; Ioanna KONIDARI, Auteur ; Patrice L. WHITEHEAD, Auteur ; Gerard SCHELLENBERG, Auteur ; Hakon HAKONARSON, Auteur ; Jonathan L. HAINES, Auteur ; Margaret A. O. PERICAK-VANCE, Auteur ; Eden R. MARTIN, Auteur Année de publication : 2011 Article en page(s) : 10 p. Langues : Anglais (eng) Index. décimale : PER Périodiques Résumé : BACKGROUND:Autism spectrum disorder (ASD) is a complex neurodevelopmental disorder with a strong genetic component. The skewed prevalence toward males and evidence suggestive of linkage to the X chromosome in some studies suggest the presence of X-linked susceptibility genes in people with ASD.METHODS:We analyzed genome-wide association study (GWAS) data on the X chromosome in three independent autism GWAS data sets: two family data sets and one case-control data set. We performed meta- and joint analyses on the combined family and case-control data sets. In addition to the meta- and joint analyses, we performed replication analysis by using the two family data sets as a discovery data set and the case-control data set as a validation data set.RESULTS:One SNP, rs17321050, in the transducin beta-like 1X-linked (TBL1X) gene [OMIM:300196] showed chromosome-wide significance in the meta-analysis (P value = 4.86 x 10-6) and joint analysis (P value = 4.53 x 10-6) in males. The SNP was also close to the replication threshold of 0.0025 in the discovery data set (P = 5.89 x 10-3) and passed the replication threshold in the validation data set (P = 2.56 x 10-4). Two other SNPs in the same gene in linkage disequilibrium with rs17321050 also showed significance close to the chromosome-wide threshold in the meta-analysis.CONCLUSIONS:TBL1X is in the Wnt signaling pathway, which has previously been implicated as having a role in autism. Deletions in the Xp22.2 to Xp22.3 region containing TBL1X and surrounding genes are associated with several genetic syndromes that include intellectual disability and autistic features. Our results, based on meta-analysis, joint analysis and replication analysis, suggest that TBL1X may play a role in ASD risk. En ligne : http://dx.doi.org/10.1186/2040-2392-2-18 Permalink : https://www.cra-rhone-alpes.org/cid/opac_css/index.php?lvl=notice_display&id=149
in Molecular Autism > (November 2011) . - 10 p.[article] An X chromosome-wide association study in autism families identifies TBL1X as a novel autism spectrum disorder candidate gene in males [Texte imprimé et/ou numérique] / Ren-Hua CHUNG, Auteur ; Deqiong MA, Auteur ; Kai WANG, Auteur ; Dale HEDGES, Auteur ; James M. JAWORSKI, Auteur ; John R. GILBERT, Auteur ; Michael L. CUCCARO, Auteur ; Harry H. WRIGHT, Auteur ; Ruth K. ABRAMSON, Auteur ; Ioanna KONIDARI, Auteur ; Patrice L. WHITEHEAD, Auteur ; Gerard SCHELLENBERG, Auteur ; Hakon HAKONARSON, Auteur ; Jonathan L. HAINES, Auteur ; Margaret A. O. PERICAK-VANCE, Auteur ; Eden R. MARTIN, Auteur . - 2011 . - 10 p.
Langues : Anglais (eng)
in Molecular Autism > (November 2011) . - 10 p.
Index. décimale : PER Périodiques Résumé : BACKGROUND:Autism spectrum disorder (ASD) is a complex neurodevelopmental disorder with a strong genetic component. The skewed prevalence toward males and evidence suggestive of linkage to the X chromosome in some studies suggest the presence of X-linked susceptibility genes in people with ASD.METHODS:We analyzed genome-wide association study (GWAS) data on the X chromosome in three independent autism GWAS data sets: two family data sets and one case-control data set. We performed meta- and joint analyses on the combined family and case-control data sets. In addition to the meta- and joint analyses, we performed replication analysis by using the two family data sets as a discovery data set and the case-control data set as a validation data set.RESULTS:One SNP, rs17321050, in the transducin beta-like 1X-linked (TBL1X) gene [OMIM:300196] showed chromosome-wide significance in the meta-analysis (P value = 4.86 x 10-6) and joint analysis (P value = 4.53 x 10-6) in males. The SNP was also close to the replication threshold of 0.0025 in the discovery data set (P = 5.89 x 10-3) and passed the replication threshold in the validation data set (P = 2.56 x 10-4). Two other SNPs in the same gene in linkage disequilibrium with rs17321050 also showed significance close to the chromosome-wide threshold in the meta-analysis.CONCLUSIONS:TBL1X is in the Wnt signaling pathway, which has previously been implicated as having a role in autism. Deletions in the Xp22.2 to Xp22.3 region containing TBL1X and surrounding genes are associated with several genetic syndromes that include intellectual disability and autistic features. Our results, based on meta-analysis, joint analysis and replication analysis, suggest that TBL1X may play a role in ASD risk. En ligne : http://dx.doi.org/10.1186/2040-2392-2-18 Permalink : https://www.cra-rhone-alpes.org/cid/opac_css/index.php?lvl=notice_display&id=149 Common variation contributes to the genetic architecture of social communication traits / Beate ST POURCAIN in Molecular Autism, (September 2013)
![]()
[article]
Titre : Common variation contributes to the genetic architecture of social communication traits Type de document : Texte imprimé et/ou numérique Auteurs : Beate ST POURCAIN, Auteur ; Andrew J. O. WHITEHOUSE, Auteur ; Wei ANG, Auteur ; Nicole WARRINGTON, Auteur ; Joseph GLESSNER, Auteur ; Kai WANG, Auteur ; Nicholas TIMPSON, Auteur ; David EVANS, Auteur ; John KEMP, Auteur ; Susan RING, Auteur ; Wendy MCARDLE, Auteur ; Jean GOLDING, Auteur ; Hakon HAKONARSON, Auteur ; Craig E. PENNELL, Auteur ; George SMITH, Auteur Langues : Anglais (eng) Index. décimale : PER Périodiques Résumé : Social communication difficulties represent an autistic trait that is highly heritable and persistent during the course of development. However, little is known about the underlying genetic architecture of this phenotype. We performed a genome-wide association study on parent-reported social communication problems using items of the children's communication checklist (age 10 to 11 years) studying single and/or joint marker effects. Analyses were conducted in a large UK population-based birth cohort (Avon Longitudinal Study of Parents and their Children, ALSPAC, N = 5,584) and followed-up within a sample of children with comparable measures from Western Australia (RAINE, N = 1364). Two of our seven independent top signals (P-discovery 1.0E-05) were replicated (0.009 P-replication [less than or equal to]0.02) within RAINE and suggested evidence for association at 6p22.1 (rs9257616, meta-P = 2.5E-07) and 14q22.1 (rs2352908, meta-P = 1.1E-06). The signal at 6p22.1 was identified within the olfactory receptor gene cluster within the broader major histocompatibility complex (MHC) region. The strongest candidate locus within this genomic area was TRIM27. This gene encodes an ubiquitin E3 ligase, which is an interaction partner of methyl-CpG-binding domain (MBD) proteins, such as MBD3 and MBD4, and rare protein-coding mutations within MBD3 and MBD4 have been linked to autism. The signal at 14q22.1 was found within a gene-poor region.Single-variant findings were complemented by estimations of the narrow-sense heritability in ALSPAC suggesting that approximately a fifth of the phenotypic variance in social communication traits is accounted for by joint additive effects of genotyped single nucleotide polymorphisms throughout the genome (h2(SE) = 0.18(0.066), P = 0.0027). Overall, our study provides both joint and single-SNP-based evidence for the contribution of common polymorphisms to variation in social communication phenotypes. En ligne : http://dx.doi.org/10.1186/2040-2392-4-34 Permalink : https://www.cra-rhone-alpes.org/cid/opac_css/index.php?lvl=notice_display&id=227
in Molecular Autism > (September 2013)[article] Common variation contributes to the genetic architecture of social communication traits [Texte imprimé et/ou numérique] / Beate ST POURCAIN, Auteur ; Andrew J. O. WHITEHOUSE, Auteur ; Wei ANG, Auteur ; Nicole WARRINGTON, Auteur ; Joseph GLESSNER, Auteur ; Kai WANG, Auteur ; Nicholas TIMPSON, Auteur ; David EVANS, Auteur ; John KEMP, Auteur ; Susan RING, Auteur ; Wendy MCARDLE, Auteur ; Jean GOLDING, Auteur ; Hakon HAKONARSON, Auteur ; Craig E. PENNELL, Auteur ; George SMITH, Auteur.
Langues : Anglais (eng)
in Molecular Autism > (September 2013)
Index. décimale : PER Périodiques Résumé : Social communication difficulties represent an autistic trait that is highly heritable and persistent during the course of development. However, little is known about the underlying genetic architecture of this phenotype. We performed a genome-wide association study on parent-reported social communication problems using items of the children's communication checklist (age 10 to 11 years) studying single and/or joint marker effects. Analyses were conducted in a large UK population-based birth cohort (Avon Longitudinal Study of Parents and their Children, ALSPAC, N = 5,584) and followed-up within a sample of children with comparable measures from Western Australia (RAINE, N = 1364). Two of our seven independent top signals (P-discovery 1.0E-05) were replicated (0.009 P-replication [less than or equal to]0.02) within RAINE and suggested evidence for association at 6p22.1 (rs9257616, meta-P = 2.5E-07) and 14q22.1 (rs2352908, meta-P = 1.1E-06). The signal at 6p22.1 was identified within the olfactory receptor gene cluster within the broader major histocompatibility complex (MHC) region. The strongest candidate locus within this genomic area was TRIM27. This gene encodes an ubiquitin E3 ligase, which is an interaction partner of methyl-CpG-binding domain (MBD) proteins, such as MBD3 and MBD4, and rare protein-coding mutations within MBD3 and MBD4 have been linked to autism. The signal at 14q22.1 was found within a gene-poor region.Single-variant findings were complemented by estimations of the narrow-sense heritability in ALSPAC suggesting that approximately a fifth of the phenotypic variance in social communication traits is accounted for by joint additive effects of genotyped single nucleotide polymorphisms throughout the genome (h2(SE) = 0.18(0.066), P = 0.0027). Overall, our study provides both joint and single-SNP-based evidence for the contribution of common polymorphisms to variation in social communication phenotypes. En ligne : http://dx.doi.org/10.1186/2040-2392-4-34 Permalink : https://www.cra-rhone-alpes.org/cid/opac_css/index.php?lvl=notice_display&id=227 Identification of rare DNA sequence variants in high-risk autism families and their prevalence in a large case/control population / Nori MATSUNAMI in Molecular Autism, (January 2014)
![]()
[article]
Titre : Identification of rare DNA sequence variants in high-risk autism families and their prevalence in a large case/control population Type de document : Texte imprimé et/ou numérique Auteurs : Nori MATSUNAMI, Auteur ; Charles HENSEL, Auteur ; Lisa BAIRD, Auteur ; Jeff STEVENS, Auteur ; Brith OTTERUD, Auteur ; Tami LEPPERT, Auteur ; Tena VARVIL, Auteur ; Dexter HADLEY, Auteur ; Joseph GLESSNER, Auteur ; Renata PELLEGRINO, Auteur ; Cecilia KIM, Auteur ; Kelly THOMAS, Auteur ; Fengxiang WANG, Auteur ; Frederick OTIENO, Auteur ; Karen HO, Auteur ; Gerald CHRISTENSEN, Auteur ; Dongying LI, Auteur ; Rytis PREKERIS, Auteur ; Christophe LAMBERT, Auteur ; Hakon HAKONARSON, Auteur ; Mark LEPPERT, Auteur Langues : Anglais (eng) Index. décimale : PER Périodiques Résumé : Genetics clearly plays a major role in the etiology of autism spectrum disorders (ASDs), but studies to date are only beginning to characterize the causal genetic variants responsible. Until recently, studies using multiple extended multi-generation families to identify ASD risk genes had not been undertaken. We identified haplotypes shared among individuals with ASDs in large multiplex families, followed by targeted DNA capture and sequencing to identify potential causal variants. We also assayed the prevalence of the identified variants in a large ASD case/control population. We identified 584 non-conservative missense, nonsense, frameshift and splice site variants that might predispose to autism in our high-risk families. Eleven of these variants were observed to have odds ratios greater than 1.5 in a set of 1,541 unrelated children with autism and 5,785 controls. Three variants, in the RAB11FIP5, ABP1, and JMJD7-PLA2G4B genes, each were observed in a single case and not in any controls. These variants also were not seen in public sequence databases, suggesting that they may be rare causal ASD variants. Twenty-eight additional rare variants were observed only in high-risk ASD families. Collectively, these 39 variants identify 36 genes as ASD risk genes. Segregation of sequence variants and of copy number variants previously detected in these families reveals a complex pattern, with only a RAB11FIP5 variant segregating to all affected individuals in one two-generation pedigree. Some affected individuals were found to have multiple potential risk alleles, including sequence variants and copy number variants (CNVs), suggesting that the high incidence of autism in these families could be best explained by variants at multiple loci. Our study is the first to use haplotype sharing to identify familial ASD risk loci. In total, we identified 39 variants in 36 genes that may confer a genetic risk of developing autism. The observation of 11 of these variants in unrelated ASD cases further supports their role as ASD risk variants. En ligne : http://dx.doi.org/10.1186/2040-2392-5-5 Permalink : https://www.cra-rhone-alpes.org/cid/opac_css/index.php?lvl=notice_display&id=227
in Molecular Autism > (January 2014)[article] Identification of rare DNA sequence variants in high-risk autism families and their prevalence in a large case/control population [Texte imprimé et/ou numérique] / Nori MATSUNAMI, Auteur ; Charles HENSEL, Auteur ; Lisa BAIRD, Auteur ; Jeff STEVENS, Auteur ; Brith OTTERUD, Auteur ; Tami LEPPERT, Auteur ; Tena VARVIL, Auteur ; Dexter HADLEY, Auteur ; Joseph GLESSNER, Auteur ; Renata PELLEGRINO, Auteur ; Cecilia KIM, Auteur ; Kelly THOMAS, Auteur ; Fengxiang WANG, Auteur ; Frederick OTIENO, Auteur ; Karen HO, Auteur ; Gerald CHRISTENSEN, Auteur ; Dongying LI, Auteur ; Rytis PREKERIS, Auteur ; Christophe LAMBERT, Auteur ; Hakon HAKONARSON, Auteur ; Mark LEPPERT, Auteur.
Langues : Anglais (eng)
in Molecular Autism > (January 2014)
Index. décimale : PER Périodiques Résumé : Genetics clearly plays a major role in the etiology of autism spectrum disorders (ASDs), but studies to date are only beginning to characterize the causal genetic variants responsible. Until recently, studies using multiple extended multi-generation families to identify ASD risk genes had not been undertaken. We identified haplotypes shared among individuals with ASDs in large multiplex families, followed by targeted DNA capture and sequencing to identify potential causal variants. We also assayed the prevalence of the identified variants in a large ASD case/control population. We identified 584 non-conservative missense, nonsense, frameshift and splice site variants that might predispose to autism in our high-risk families. Eleven of these variants were observed to have odds ratios greater than 1.5 in a set of 1,541 unrelated children with autism and 5,785 controls. Three variants, in the RAB11FIP5, ABP1, and JMJD7-PLA2G4B genes, each were observed in a single case and not in any controls. These variants also were not seen in public sequence databases, suggesting that they may be rare causal ASD variants. Twenty-eight additional rare variants were observed only in high-risk ASD families. Collectively, these 39 variants identify 36 genes as ASD risk genes. Segregation of sequence variants and of copy number variants previously detected in these families reveals a complex pattern, with only a RAB11FIP5 variant segregating to all affected individuals in one two-generation pedigree. Some affected individuals were found to have multiple potential risk alleles, including sequence variants and copy number variants (CNVs), suggesting that the high incidence of autism in these families could be best explained by variants at multiple loci. Our study is the first to use haplotype sharing to identify familial ASD risk loci. In total, we identified 39 variants in 36 genes that may confer a genetic risk of developing autism. The observation of 11 of these variants in unrelated ASD cases further supports their role as ASD risk variants. En ligne : http://dx.doi.org/10.1186/2040-2392-5-5 Permalink : https://www.cra-rhone-alpes.org/cid/opac_css/index.php?lvl=notice_display&id=227 A large-scale survey of the novel 15q24 microdeletion syndrome in autism spectrum disorders identifies an atypical deletion that narrows the critical region / L. Alison MCINNES in Molecular Autism, (March 2010)
![]()
[article]
Titre : A large-scale survey of the novel 15q24 microdeletion syndrome in autism spectrum disorders identifies an atypical deletion that narrows the critical region Type de document : Texte imprimé et/ou numérique Auteurs : L. Alison MCINNES, Auteur ; Catalina BETANCUR, Auteur ; Joseph GLESSNER, Auteur ; Lisa EDELMANN, Auteur ; Elina R. MANGHI, Auteur ; Marietha FALLAS, Auteur ; Patricia JIMENEZ GONZALEZ, Auteur ; Tracy BRANDT, Auteur ; Marion PILORGE, Auteur ; Alisa NAKAMINE, Auteur ; Joseph D. BUXBAUM, Auteur ; Hakon HAKONARSON, Auteur Année de publication : 2010 Article en page(s) : 12 p. Langues : Anglais (eng) Index. décimale : PER Périodiques Résumé : Background
The 15q24 microdeletion syndrome has been recently described as a recurrent, submicroscopic genomic imbalance found in individuals with intellectual disability, typical facial appearance, hypotonia, and digital and genital abnormalities. Gene dosage abnormalities, including copy number variations (CNVs), have been identified in a significant fraction of individuals with autism spectrum disorders (ASDs). In this study we surveyed two ASD cohorts for 15q24 abnormalities to assess the frequency of genomic imbalances in this interval.
Methods
We screened 173 unrelated subjects with ASD from the Central Valley of Costa Rica and 1336 subjects with ASD from 785 independent families registered with the Autism Genetic Resource Exchange (AGRE) for CNVs across 15q24 using oligonucleotide arrays. Rearrangements were confirmed by array comparative genomic hybridization and quantitative PCR.
Results
Among the patients from Costa Rica, an atypical de novo deletion of 3.06 Mb in 15q23-q24.1 was detected in a boy with autism sharing many features with the other 13 subjects with the 15q24 microdeletion syndrome described to date. He exhibited intellectual disability, constant smiling, characteristic facial features (high anterior hairline, broad medial eyebrows, epicanthal folds, hypertelorism, full lower lip and protuberant, posteriorly rotated ears), single palmar crease, toe syndactyly and congenital nystagmus. The deletion breakpoints are atypical and lie outside previously characterized low copy repeats (69,838-72,897 Mb). Genotyping data revealed that the deletion had occurred in the paternal chromosome. Among the AGRE families, no large 15q24 deletions were observed.
Conclusions
From the current and previous studies, deletions in the 15q24 region represent rare causes of ASDs with an estimated frequency of 0.1 to 0.2% in individuals ascertained for ASDs, although the proportion might be higher in sporadic cases. These rates compare with a frequency of about 0.3% in patients ascertained for unexplained intellectual disability and congenital anomalies. This atypical deletion reduces the minimal interval for the syndrome from 1.75 Mb to 766 kb, implicating a reduced number of genes (15 versus 38). Sequencing of genes in the 15q24 interval in large ASD and intellectual disability samples may identify mutations of etiologic importance in the development of these disorders.En ligne : http://dx.doi.org/10.1186/2040-2392-1-5 Permalink : https://www.cra-rhone-alpes.org/cid/opac_css/index.php?lvl=notice_display&id=102
in Molecular Autism > (March 2010) . - 12 p.[article] A large-scale survey of the novel 15q24 microdeletion syndrome in autism spectrum disorders identifies an atypical deletion that narrows the critical region [Texte imprimé et/ou numérique] / L. Alison MCINNES, Auteur ; Catalina BETANCUR, Auteur ; Joseph GLESSNER, Auteur ; Lisa EDELMANN, Auteur ; Elina R. MANGHI, Auteur ; Marietha FALLAS, Auteur ; Patricia JIMENEZ GONZALEZ, Auteur ; Tracy BRANDT, Auteur ; Marion PILORGE, Auteur ; Alisa NAKAMINE, Auteur ; Joseph D. BUXBAUM, Auteur ; Hakon HAKONARSON, Auteur . - 2010 . - 12 p.
Langues : Anglais (eng)
in Molecular Autism > (March 2010) . - 12 p.
Index. décimale : PER Périodiques Résumé : Background
The 15q24 microdeletion syndrome has been recently described as a recurrent, submicroscopic genomic imbalance found in individuals with intellectual disability, typical facial appearance, hypotonia, and digital and genital abnormalities. Gene dosage abnormalities, including copy number variations (CNVs), have been identified in a significant fraction of individuals with autism spectrum disorders (ASDs). In this study we surveyed two ASD cohorts for 15q24 abnormalities to assess the frequency of genomic imbalances in this interval.
Methods
We screened 173 unrelated subjects with ASD from the Central Valley of Costa Rica and 1336 subjects with ASD from 785 independent families registered with the Autism Genetic Resource Exchange (AGRE) for CNVs across 15q24 using oligonucleotide arrays. Rearrangements were confirmed by array comparative genomic hybridization and quantitative PCR.
Results
Among the patients from Costa Rica, an atypical de novo deletion of 3.06 Mb in 15q23-q24.1 was detected in a boy with autism sharing many features with the other 13 subjects with the 15q24 microdeletion syndrome described to date. He exhibited intellectual disability, constant smiling, characteristic facial features (high anterior hairline, broad medial eyebrows, epicanthal folds, hypertelorism, full lower lip and protuberant, posteriorly rotated ears), single palmar crease, toe syndactyly and congenital nystagmus. The deletion breakpoints are atypical and lie outside previously characterized low copy repeats (69,838-72,897 Mb). Genotyping data revealed that the deletion had occurred in the paternal chromosome. Among the AGRE families, no large 15q24 deletions were observed.
Conclusions
From the current and previous studies, deletions in the 15q24 region represent rare causes of ASDs with an estimated frequency of 0.1 to 0.2% in individuals ascertained for ASDs, although the proportion might be higher in sporadic cases. These rates compare with a frequency of about 0.3% in patients ascertained for unexplained intellectual disability and congenital anomalies. This atypical deletion reduces the minimal interval for the syndrome from 1.75 Mb to 766 kb, implicating a reduced number of genes (15 versus 38). Sequencing of genes in the 15q24 interval in large ASD and intellectual disability samples may identify mutations of etiologic importance in the development of these disorders.En ligne : http://dx.doi.org/10.1186/2040-2392-1-5 Permalink : https://www.cra-rhone-alpes.org/cid/opac_css/index.php?lvl=notice_display&id=102
Titre : The Genetics of Autism Spectrum Disorders Type de document : Texte imprimé et/ou numérique Auteurs : John J.M. CONNOLLY, Auteur ; Hakon HAKONARSON, Auteur Année de publication : 2011 Importance : p.51-64 Langues : Anglais (eng) Index. décimale : AUT-B AUT-B - L'Autisme - Ouvrages généraux et scientifiques En ligne : http://dx.doi.org/10.5772/10601 Permalink : https://www.cra-rhone-alpes.org/cid/opac_css/index.php?lvl=notice_display&id=143 The Genetics of Autism Spectrum Disorders [Texte imprimé et/ou numérique] / John J.M. CONNOLLY, Auteur ; Hakon HAKONARSON, Auteur . - 2011 . - p.51-64.
Langues : Anglais (eng)
Index. décimale : AUT-B AUT-B - L'Autisme - Ouvrages généraux et scientifiques En ligne : http://dx.doi.org/10.5772/10601 Permalink : https://www.cra-rhone-alpes.org/cid/opac_css/index.php?lvl=notice_display&id=143 Exemplaires
Code-barres Cote Support Localisation Section Disponibilité aucun exemplaire The Philadelphia Neurodevelopmental Cohort: constructing a deep phenotyping collaborative / Monica E. CALKINS in Journal of Child Psychology and Psychiatry, 56-12 (December 2015)
![]()
PermalinkVariability in the common genetic architecture of social-communication spectrum phenotypes during childhood and adolescence / Beate ST POURCAIN in Molecular Autism, (February 2014)
![]()
PermalinkWhole-genome sequencing in an autism multiplex family / Lingling SHI in Molecular Autism, (April 2013)
![]()
Permalink