Biological Pschiatry : Novel Neurodevelopmental Disturbances and Autism Risk (Mars 2021)

Numéros spéciaux

Le numéro de mars 2021 de Biological Psychiatry traite des facteurs de risque neurodéveloppementaux du TSA.

Novel Neurodevelopmental Disturbances and Autism Risk

1. Schafer ST, Gage FH. The When and Where : Molecular and Cellular Convergence in Autism. Biol Psychiatry. 2021 ; 89(5) : 419-20.

Lien vers le texte intégral (Open Access ou abonnement)

2. Andrews DS, Lee JK, Harvey DJ, Waizbard-Bartov E, Solomon M, Rogers SJ, Nordahl CW, Amaral DG. A Longitudinal Study of White Matter Development in Relation to Changes in Autism Severity Across Early Childhood. Biol Psychiatry. 2021 ; 89(5) : 424-32.

BACKGROUND : Cross-sectional diffusion-weighted magnetic resonance imaging studies suggest that young autistic children have alterations in white matter structure that differ from older autistic individuals. However, it is unclear whether these differences result from atypical neurodevelopment or sampling differences between young and older cohorts. Furthermore, the relationship between altered white matter development and longitudinal changes in autism symptoms is unknown. METHODS : Using longitudinal diffusion-weighted magnetic resonance imaging acquired over 2 to 3 time points between the ages of approximately 2.5 to 7.0 years in 125 autistic children and 69 typically developing control participants, we directly tested the hypothesis that autistic individuals have atypical white matter development across childhood. Additionally, we sought to determine whether changes in white matter diffusion parameters were associated with longitudinal changes in autism severity. RESULTS : Autistic children were found to have slower development of fractional anisotropy in the cingulum bundle, superior longitudinal fasciculus, internal capsule, and splenium of the corpus callosum. Furthermore, in the sagittal stratum, autistic individuals who increased in autism severity over time had a slower developmental trajectory of fractional anisotropy compared with individuals whose autism decreased in severity. In the uncinate fasciculus, autistic individuals who decreased in autism symptom severity also had greater increases in fractional anisotropy with age. CONCLUSIONS : These longitudinal findings indicate that previously reported differences in diffusion-weighted magnetic resonance imaging measures between younger and older autism cohorts are attributable to an atypical developmental trajectory of white matter. Differences in white matter development between individuals whose autism severity increased, remained stable, or decreased suggest that these functional differences are associated with fiber development in the autistic brain.

Lien vers le texte intégral (Open Access ou abonnement)

3. Needham BD, Adame MD, Serena G, Rose DR, Preston GM, Conrad MC, Campbell AS, Donabedian DH, Fasano A, Ashwood P, Mazmanian SK. Plasma and Fecal Metabolite Profiles in Autism Spectrum Disorder. Biol Psychiatry. 2021 ; 89(5) : 451-62.

BACKGROUND : Autism spectrum disorder (ASD) is a neurodevelopmental condition with hallmark behavioral manifestations including impaired social communication and restricted repetitive behavior. In addition, many affected individuals display metabolic imbalances, immune dysregulation, gastrointestinal dysfunction, and altered gut microbiome compositions. METHODS : We sought to better understand nonbehavioral features of ASD by determining molecular signatures in peripheral tissues through mass spectrometry methods (ultrahigh performance liquid chromatography-tandem mass spectrometry) with broad panels of identified metabolites. Herein, we compared the global metabolome of 231 plasma and 97 fecal samples from a large cohort of children with ASD and typically developing control children. RESULTS : Differences in amino acid, lipid, and xenobiotic metabolism distinguished ASD and typically developing samples. Our results implicated oxidative stress and mitochondrial dysfunction, hormone level elevations, lipid profile changes, and altered levels of phenolic microbial metabolites. We also revealed correlations between specific metabolite profiles and clinical behavior scores. Furthermore, a summary of metabolites modestly associated with gastrointestinal dysfunction in ASD is provided, and a pilot study of metabolites that can be transferred via fecal microbial transplant into mice is identified. CONCLUSIONS : These findings support a connection between metabolism, gastrointestinal physiology, and complex behavioral traits and may advance discovery and development of molecular biomarkers for ASD.

Lien vers le texte intégral (Open Access ou abonnement)

4. Gardner RM, Lee BK, Brynge M, Sjöqvist H, Dalman C, Karlsson H. Neonatal Levels of Acute Phase Proteins and Risk of Autism Spectrum Disorder. Biol Psychiatry. 2021 ; 89(5) : 463-75.

BACKGROUND : Immune signaling pathways influence neurodevelopment and are hypothesized to contribute to the etiology of autism spectrum disorder (ASD). We aimed to assess risk of ASD in relation to levels of neonatal acute phase proteins (APPs), key components of innate immune function, measured in neonatal dried blood spots. METHODS : We included 924 ASD cases, 1092 unaffected population-based controls, and 203 unaffected siblings of ASD cases in this case-control study nested within the register-based Stockholm Youth Cohort. Concentrations of 9 different APPs were measured in eluates from neonatal dried blood spots from cases, controls, and siblings using a bead-based multiplex assay. RESULTS : Neonatal C-reactive protein was consistently associated with odds of ASD in case-control comparisons, with higher odds associated with the highest quintile compared with the middle quintile (odds ratio [OR] = 1.50, 95% confidence interval [CI] = 1.10-2.04) in adjusted analyses. In contrast, the lowest quintiles of α-2-macroglobulin (OR = 3.71, CI = 1.21-11.33), ferritin (OR = 4.20, CI = 1.40-12.65), and serum amyloid P (OR = 3.05, CI = 1.16-8.01) were associated with odds of ASD in the matched sibling comparison. Neonatal APPs varied with perinatal environmental factors and maternal/fetal phenotypes. Significant interactions in terms of risk for ASD were observed between neonatal APPs and maternal infection during late pregnancy, maternal anemia, and maternal psychiatric history. CONCLUSIONS : Indicators of the neonatal innate immune response are associated with risk of ASD, although the nature of these associations varies considerably with factors in the perinatal environment and the genetic background of the comparison group.

Lien vers le texte intégral (Open Access ou abonnement)

5. Nayar K, Sealock JM, Maltman N, Bush L, Cook EH, Davis LK, Losh M. Elevated Polygenic Burden for Autism Spectrum Disorder Is Associated With the Broad Autism Phenotype in Mothers of Individuals With Autism Spectrum Disorder. Biol Psychiatry. 2021 ; 89(5) : 476-85.

BACKGROUND : Autism spectrum disorder (ASD) is a multifactorial neurodevelopmental disorder that encompasses a complex and heterogeneous set of traits. Subclinical traits that mirror the core features of ASD, referred to as the broad autism phenotype (BAP), have been documented repeatedly in unaffected relatives and are believed to reflect underlying genetic liability to ASD. The BAP may help inform the etiology of ASD by allowing the stratification of families into more phenotypically and etiologically homogeneous subgroups. This study explores polygenic scores related to the BAP. METHODS : Phenotypic and genotypic information were obtained from 2614 trios from the Simons Simplex Collection. Polygenic scores of ASD (ASD-PGSs) were generated across the sample to determine the shared genetic overlap between the BAP and ASD. Maternal and paternal ASD-PGSs were explored in relation to BAP traits and their child’s ASD symptomatology. RESULTS : Maternal pragmatic language was related to child’s social communicative atypicalities. In fathers, rigid personality was related to increased repetitive behaviors in children. Maternal (but not paternal) ASD-PGSs were related to the pragmatic language and rigid BAP domains. CONCLUSIONS : Associations emerged between parent and child phenotypes, with more associations emerging in mothers than in fathers. ASD-PGS associations emerged with BAP in mothers only, highlighting the potential for a female protective factor, and implicating the polygenic etiology of ASD-related phenotypes in the BAP.

Lien vers le texte intégral (Open Access ou abonnement)

6. Adhya D, Swarup V, Nagy R, Dutan L, Shum C, Valencia-Alarcón EP, Jozwik KM, Mendez MA, Horder J, Loth E, Nowosiad P, Lee I, Skuse D, Flinter FA, Murphy D, McAlonan G, Geschwind DH, Price J, Carroll J, Srivastava DP, Baron-Cohen S. Atypical Neurogenesis in Induced Pluripotent Stem Cells From Autistic Individuals. Biol Psychiatry. 2021 ; 89(5) : 486-96.

BACKGROUND : Autism is a heterogeneous collection of disorders with a complex molecular underpinning. Evidence from postmortem brain studies have indicated that early prenatal development may be altered in autism. Induced pluripotent stem cells (iPSCs) generated from individuals with autism with macrocephaly also indicate prenatal development as a critical period for this condition. But little is known about early altered cellular events during prenatal stages in autism. METHODS : iPSCs were generated from 9 unrelated individuals with autism without macrocephaly and with heterogeneous genetic backgrounds, and 6 typically developing control individuals. iPSCs were differentiated toward either cortical or midbrain fates. Gene expression and high throughput cellular phenotyping was used to characterize iPSCs at different stages of differentiation. RESULTS : A subset of autism-iPSC cortical neurons were RNA-sequenced to reveal autism-specific signatures similar to postmortem brain studies, indicating a potential common biological mechanism. Autism-iPSCs differentiated toward a cortical fate displayed impairments in the ability to self-form into neural rosettes. In addition, autism-iPSCs demonstrated significant differences in rate of cell type assignment of cortical precursors and dorsal and ventral forebrain precursors. These cellular phenotypes occurred in the absence of alterations in cell proliferation during cortical differentiation, differing from previous studies. Acquisition of cell fate during midbrain differentiation was not different between control- and autism-iPSCs. CONCLUSIONS : Taken together, our data indicate that autism-iPSCs diverge from control-iPSCs at a cellular level during early stage of neurodevelopment. This suggests that unique developmental differences associated with autism may be established at early prenatal stages.

Lien vers le texte intégral (Open Access ou abonnement)