[article]
Titre : |
Convergent depression of activity-dependent bulk endocytosis in rodent models of autism spectrum disorder |
Type de document : |
Texte imprimé et/ou numérique |
Auteurs : |
Mohammed Sarfaraz NAWAZ, Auteur ; Peter C KIND, Auteur ; Michael A COUSIN, Auteur |
Article en page(s) : |
26 |
Langues : |
Anglais (eng) |
Mots-clés : |
Animals Endocytosis Disease Models, Animal Rats Synaptic Vesicles/metabolism Autism Spectrum Disorder/metabolism/physiopathology/genetics/pathology Neurons/metabolism Cells, Cultured Exocytosis Activity Autism Endocytosis Hippocampus Presynapse Rat Vesicle performed in accordance with the UK Animal (Scientific Procedures) Act 1986, under Project and Personal Licence authority and were approved by the Animal Welfare and Ethical Review Body at the University of Edinburgh (Home Office project licence - 7008878). Similarly, procedures were conducted in accordance with protocols approved by the Institutional Animal Ethics Committee of Institute for Stem Cell Science and Regenerative Medicine, Bangalore. Consent for publication: Not applicable. Competing interests: Peter Kind is an Associate Editor for Molecular Autism. |
Index. décimale : |
PER Périodiques |
Résumé : |
BACKGROUND: The key pathological mechanisms underlying autism spectrum disorder (ASD) remain relatively undetermined, potentially due to the heterogenous nature of the condition. Targeted studies of a series of monogenic ASDs have revealed postsynaptic dysfunction as a central conserved mechanism. Presynaptic dysfunction is emerging as an additional disease locus in neurodevelopmental disorders; however, it is unclear whether this dysfunction drives ASD or is an adaptation to the altered brain microenvironment. METHODS: To differentiate between these two competing scenarios, we performed a high content analysis of key stages of the synaptic vesicle lifecycle in primary neuronal cultures derived from a series of preclinical rat models of monogenic ASD. These five independent models (Nrxn1(+/-), Nlgn3(-/y), Syngap(+/-), Syngap(+/?-GAP), Pten(+/-)) were specifically selected to have perturbations in a diverse palette of genes that were expressed either at the pre- or post-synapse. Synaptic vesicle exocytosis and cargo trafficking were triggered via two discrete trains of activity and monitored using the genetically-encoded reporter synaptophysin-pHluorin. Activity-dependent bulk endocytosis was assessed during intense neuronal activity using the fluid phase marker tetramethylrhodamine-dextran. RESULTS: Both synaptic vesicle fusion events and cargo trafficking were unaffected in all models investigated under all stimulation protocols. However, a key convergent phenotype across neurons derived from all five models was revealed, a depression in activity-dependent bulk endocytosis. LIMITATIONS: The study is exclusively conducted in primary cultures of hippocampal neurons; therefore, the impact on neurons from other brain regions or altered brain microcircuitry was not assessed. No molecular mechanism has been identified for this depression. CONCLUSION: This suggests that depression of activity-dependent bulk endocytosis is a presynaptic homeostatic mechanism to correct for intrinsic dysfunction in ASD neurons. |
En ligne : |
https://dx.doi.org/10.1186/s13229-025-00660-6 |
Permalink : |
https://www.cra-rhone-alpes.org/cid/opac_css/index.php?lvl=notice_display&id=555 |
in Molecular Autism > 16 (2025) . - 26
[article] Convergent depression of activity-dependent bulk endocytosis in rodent models of autism spectrum disorder [Texte imprimé et/ou numérique] / Mohammed Sarfaraz NAWAZ, Auteur ; Peter C KIND, Auteur ; Michael A COUSIN, Auteur . - 26. Langues : Anglais ( eng) in Molecular Autism > 16 (2025) . - 26
Mots-clés : |
Animals Endocytosis Disease Models, Animal Rats Synaptic Vesicles/metabolism Autism Spectrum Disorder/metabolism/physiopathology/genetics/pathology Neurons/metabolism Cells, Cultured Exocytosis Activity Autism Endocytosis Hippocampus Presynapse Rat Vesicle performed in accordance with the UK Animal (Scientific Procedures) Act 1986, under Project and Personal Licence authority and were approved by the Animal Welfare and Ethical Review Body at the University of Edinburgh (Home Office project licence - 7008878). Similarly, procedures were conducted in accordance with protocols approved by the Institutional Animal Ethics Committee of Institute for Stem Cell Science and Regenerative Medicine, Bangalore. Consent for publication: Not applicable. Competing interests: Peter Kind is an Associate Editor for Molecular Autism. |
Index. décimale : |
PER Périodiques |
Résumé : |
BACKGROUND: The key pathological mechanisms underlying autism spectrum disorder (ASD) remain relatively undetermined, potentially due to the heterogenous nature of the condition. Targeted studies of a series of monogenic ASDs have revealed postsynaptic dysfunction as a central conserved mechanism. Presynaptic dysfunction is emerging as an additional disease locus in neurodevelopmental disorders; however, it is unclear whether this dysfunction drives ASD or is an adaptation to the altered brain microenvironment. METHODS: To differentiate between these two competing scenarios, we performed a high content analysis of key stages of the synaptic vesicle lifecycle in primary neuronal cultures derived from a series of preclinical rat models of monogenic ASD. These five independent models (Nrxn1(+/-), Nlgn3(-/y), Syngap(+/-), Syngap(+/?-GAP), Pten(+/-)) were specifically selected to have perturbations in a diverse palette of genes that were expressed either at the pre- or post-synapse. Synaptic vesicle exocytosis and cargo trafficking were triggered via two discrete trains of activity and monitored using the genetically-encoded reporter synaptophysin-pHluorin. Activity-dependent bulk endocytosis was assessed during intense neuronal activity using the fluid phase marker tetramethylrhodamine-dextran. RESULTS: Both synaptic vesicle fusion events and cargo trafficking were unaffected in all models investigated under all stimulation protocols. However, a key convergent phenotype across neurons derived from all five models was revealed, a depression in activity-dependent bulk endocytosis. LIMITATIONS: The study is exclusively conducted in primary cultures of hippocampal neurons; therefore, the impact on neurons from other brain regions or altered brain microcircuitry was not assessed. No molecular mechanism has been identified for this depression. CONCLUSION: This suggests that depression of activity-dependent bulk endocytosis is a presynaptic homeostatic mechanism to correct for intrinsic dysfunction in ASD neurons. |
En ligne : |
https://dx.doi.org/10.1186/s13229-025-00660-6 |
Permalink : |
https://www.cra-rhone-alpes.org/cid/opac_css/index.php?lvl=notice_display&id=555 |
|