[article]
Titre : |
Applying Machine Learning to Facilitate Autism Diagnostics: Pitfalls and Promises |
Type de document : |
Texte imprimé et/ou numérique |
Auteurs : |
Daniel BONE, Auteur ; Matthew S. GOODWIN, Auteur ; Matthew P. BLACK, Auteur ; Chi-Chun LEE, Auteur ; Kartik AUDHKHASI, Auteur ; Shrikanth NARAYANAN, Auteur |
Article en page(s) : |
p.1121-1136 |
Langues : |
Anglais (eng) |
Mots-clés : |
Autism diagnostic observation schedule Autism diagnostic interview Machine learning Signal processing Autism Diagnosis |
Index. décimale : |
PER Périodiques |
Résumé : |
Machine learning has immense potential to enhance diagnostic and intervention research in the behavioral sciences, and may be especially useful in investigations involving the highly prevalent and heterogeneous syndrome of autism spectrum disorder. However, use of machine learning in the absence of clinical domain expertise can be tenuous and lead to misinformed conclusions. To illustrate this concern, the current paper critically evaluates and attempts to reproduce results from two studies (Wall et al. in Transl Psychiatry 2(4):e100, 2012a; PloS One 7(8), 2012b) that claim to drastically reduce time to diagnose autism using machine learning. Our failure to generate comparable findings to those reported by Wall and colleagues using larger and more balanced data underscores several conceptual and methodological problems associated with these studies. We conclude with proposed best-practices when using machine learning in autism research, and highlight some especially promising areas for collaborative work at the intersection of computational and behavioral science. |
En ligne : |
http://dx.doi.org/10.1007/s10803-014-2268-6 |
Permalink : |
https://www.cra-rhone-alpes.org/cid/opac_css/index.php?lvl=notice_display&id=259 |
in Journal of Autism and Developmental Disorders > 45-5 (May 2015) . - p.1121-1136
[article] Applying Machine Learning to Facilitate Autism Diagnostics: Pitfalls and Promises [Texte imprimé et/ou numérique] / Daniel BONE, Auteur ; Matthew S. GOODWIN, Auteur ; Matthew P. BLACK, Auteur ; Chi-Chun LEE, Auteur ; Kartik AUDHKHASI, Auteur ; Shrikanth NARAYANAN, Auteur . - p.1121-1136. Langues : Anglais ( eng) in Journal of Autism and Developmental Disorders > 45-5 (May 2015) . - p.1121-1136
Mots-clés : |
Autism diagnostic observation schedule Autism diagnostic interview Machine learning Signal processing Autism Diagnosis |
Index. décimale : |
PER Périodiques |
Résumé : |
Machine learning has immense potential to enhance diagnostic and intervention research in the behavioral sciences, and may be especially useful in investigations involving the highly prevalent and heterogeneous syndrome of autism spectrum disorder. However, use of machine learning in the absence of clinical domain expertise can be tenuous and lead to misinformed conclusions. To illustrate this concern, the current paper critically evaluates and attempts to reproduce results from two studies (Wall et al. in Transl Psychiatry 2(4):e100, 2012a; PloS One 7(8), 2012b) that claim to drastically reduce time to diagnose autism using machine learning. Our failure to generate comparable findings to those reported by Wall and colleagues using larger and more balanced data underscores several conceptual and methodological problems associated with these studies. We conclude with proposed best-practices when using machine learning in autism research, and highlight some especially promising areas for collaborative work at the intersection of computational and behavioral science. |
En ligne : |
http://dx.doi.org/10.1007/s10803-014-2268-6 |
Permalink : |
https://www.cra-rhone-alpes.org/cid/opac_css/index.php?lvl=notice_display&id=259 |
|