[article]
Titre : |
Chd8 haploinsufficiency impairs early brain development and protein homeostasis later in life |
Type de document : |
Texte imprimé et/ou numérique |
Auteurs : |
Jessica A. JIMÉNEZ, Auteur ; Travis S. PTACEK, Auteur ; Alex H. TUTTLE, Auteur ; Ralf S. SCHMID, Auteur ; Sheryl S. MOY, Auteur ; Jeremy M. SIMON, Auteur ; Mark J. ZYLKA, Auteur |
Article en page(s) : |
74 p. |
Langues : |
Anglais (eng) |
Mots-clés : |
Autism spectrum disorder Brain overgrowth Chd8 Endoplasmic reticulum stress Macrocephaly Unfolded protein response |
Index. décimale : |
PER Périodiques |
Résumé : |
BACKGROUND: Chromodomain helicase DNA-binding protein 8 (Chd8) is a high-confidence risk gene for autism spectrum disorder (ASD). However, how Chd8 haploinsufficiency impairs gene expression in the brain and impacts behavior at different stages of life is unknown. METHODS: We generated a mutant mouse line with an ASD-linked loss-of-function mutation in Chd8 (V986*; stop codon mutation). We examined the behavior of Chd8 mutant mice along with transcriptional changes in the cerebral cortex as a function of age, with a focus on one embryonic (E14.5) and three postnatal ages (1, 6, and 12?months). RESULTS: Chd8(V986*/+) mutant mice displayed macrocephaly, reduced rearing responses and reduced center time in the open field, and enhanced social novelty preference. Behavioral phenotypes were more evident in Chd8(V986*/+) mutant mice at 1?year of age. Pup survival was reduced in wild-type x Chd8(V986*/+) crosses when the mutant parent was female. Transcriptomic analyses indicated that pathways associated with synaptic and neuronal projections and sodium channel activity were reduced in the cortex of embryonic Chd8(V986*/+) mice and then equalized relative to wild-type mice in the postnatal period. At 12?months of age, expression of genes associated with endoplasmic reticulum (ER) stress, chaperone-mediated protein folding, and the unfolded protein response (UPR) were reduced in Chd8(V986*/+) mice, whereas genes associated with the c-MET signaling pathway were increased in expression. LIMITATIONS: It is unclear whether the transcriptional changes observed with age in Chd8(V986*/+) mice reflect a direct effect of CHD8-regulated gene expression, or if CHD8 indirectly affects the expression of UPR/ER stress genes in adult mice as a consequence of neurodevelopmental abnormalities. CONCLUSIONS: Collectively, these data suggest that UPR/ER stress pathways are reduced in the cerebral cortex of aged Chd8(V986*/+) mice. Our study uncovers neurodevelopmental and age-related phenotypes in Chd8(V986*/+) mice and highlights the importance of controlling for age when studying Chd8 haploinsufficient mice. |
En ligne : |
http://dx.doi.org/10.1186/s13229-020-00369-8 |
Permalink : |
https://www.cra-rhone-alpes.org/cid/opac_css/index.php?lvl=notice_display&id=433 |
in Molecular Autism > 11 (2020) . - 74 p.
[article] Chd8 haploinsufficiency impairs early brain development and protein homeostasis later in life [Texte imprimé et/ou numérique] / Jessica A. JIMÉNEZ, Auteur ; Travis S. PTACEK, Auteur ; Alex H. TUTTLE, Auteur ; Ralf S. SCHMID, Auteur ; Sheryl S. MOY, Auteur ; Jeremy M. SIMON, Auteur ; Mark J. ZYLKA, Auteur . - 74 p. Langues : Anglais ( eng) in Molecular Autism > 11 (2020) . - 74 p.
Mots-clés : |
Autism spectrum disorder Brain overgrowth Chd8 Endoplasmic reticulum stress Macrocephaly Unfolded protein response |
Index. décimale : |
PER Périodiques |
Résumé : |
BACKGROUND: Chromodomain helicase DNA-binding protein 8 (Chd8) is a high-confidence risk gene for autism spectrum disorder (ASD). However, how Chd8 haploinsufficiency impairs gene expression in the brain and impacts behavior at different stages of life is unknown. METHODS: We generated a mutant mouse line with an ASD-linked loss-of-function mutation in Chd8 (V986*; stop codon mutation). We examined the behavior of Chd8 mutant mice along with transcriptional changes in the cerebral cortex as a function of age, with a focus on one embryonic (E14.5) and three postnatal ages (1, 6, and 12?months). RESULTS: Chd8(V986*/+) mutant mice displayed macrocephaly, reduced rearing responses and reduced center time in the open field, and enhanced social novelty preference. Behavioral phenotypes were more evident in Chd8(V986*/+) mutant mice at 1?year of age. Pup survival was reduced in wild-type x Chd8(V986*/+) crosses when the mutant parent was female. Transcriptomic analyses indicated that pathways associated with synaptic and neuronal projections and sodium channel activity were reduced in the cortex of embryonic Chd8(V986*/+) mice and then equalized relative to wild-type mice in the postnatal period. At 12?months of age, expression of genes associated with endoplasmic reticulum (ER) stress, chaperone-mediated protein folding, and the unfolded protein response (UPR) were reduced in Chd8(V986*/+) mice, whereas genes associated with the c-MET signaling pathway were increased in expression. LIMITATIONS: It is unclear whether the transcriptional changes observed with age in Chd8(V986*/+) mice reflect a direct effect of CHD8-regulated gene expression, or if CHD8 indirectly affects the expression of UPR/ER stress genes in adult mice as a consequence of neurodevelopmental abnormalities. CONCLUSIONS: Collectively, these data suggest that UPR/ER stress pathways are reduced in the cerebral cortex of aged Chd8(V986*/+) mice. Our study uncovers neurodevelopmental and age-related phenotypes in Chd8(V986*/+) mice and highlights the importance of controlling for age when studying Chd8 haploinsufficient mice. |
En ligne : |
http://dx.doi.org/10.1186/s13229-020-00369-8 |
Permalink : |
https://www.cra-rhone-alpes.org/cid/opac_css/index.php?lvl=notice_display&id=433 |
|