
- <Centre d'Information et de documentation du CRA Rhône-Alpes
- CRA
- Informations pratiques
-
Adresse
Centre d'information et de documentation
Horaires
du CRA Rhône-Alpes
Centre Hospitalier le Vinatier
bât 211
95, Bd Pinel
69678 Bron CedexLundi au Vendredi
Contact
9h00-12h00 13h30-16h00Tél: +33(0)4 37 91 54 65
Mail
Fax: +33(0)4 37 91 54 37
-
Adresse
Détail de l'auteur
Auteur Sunwook KIM |
Documents disponibles écrits par cet auteur (1)



Detecting and Classifying Self-injurious Behavior in Autism Spectrum Disorder Using Machine Learning Techniques / Kristine D. CANTIN-GARSIDE in Journal of Autism and Developmental Disorders, 50-11 (November 2020)
![]()
[article]
Titre : Detecting and Classifying Self-injurious Behavior in Autism Spectrum Disorder Using Machine Learning Techniques Type de document : Texte imprimé et/ou numérique Auteurs : Kristine D. CANTIN-GARSIDE, Auteur ; Zhenyu KONG, Auteur ; Susan W. WHITE, Auteur ; Ligia ANTEZANA, Auteur ; Sunwook KIM, Auteur ; Maury A. NUSSBAUM, Auteur Article en page(s) : p.4039-4052 Langues : Anglais (eng) Mots-clés : Activity recognition Autism Machine learning Wearable sensors Index. décimale : PER Périodiques Résumé : Traditional self-injurious behavior (SIB) management can place compliance demands on the caregiver and have low ecological validity and accuracy. To support an SIB monitoring system for autism spectrum disorder (ASD), we evaluated machine learning methods for detecting and distinguishing diverse SIB types. SIB episodes were captured with body-worn accelerometers from children with ASD and SIB. The highest detection accuracy was found with k-nearest neighbors and support vector machines (up to 99.1% for individuals and 94.6% for grouped participants), and classification efficiency was quite high (offline processing at?~?0.1 ms/observation). Our results provide an initial step toward creating a continuous and objective smart SIB monitoring system, which could in turn facilitate the future care of a pervasive concern in ASD. En ligne : http://dx.doi.org/10.1007/s10803-020-04463-x Permalink : https://www.cra-rhone-alpes.org/cid/opac_css/index.php?lvl=notice_display&id=432
in Journal of Autism and Developmental Disorders > 50-11 (November 2020) . - p.4039-4052[article] Detecting and Classifying Self-injurious Behavior in Autism Spectrum Disorder Using Machine Learning Techniques [Texte imprimé et/ou numérique] / Kristine D. CANTIN-GARSIDE, Auteur ; Zhenyu KONG, Auteur ; Susan W. WHITE, Auteur ; Ligia ANTEZANA, Auteur ; Sunwook KIM, Auteur ; Maury A. NUSSBAUM, Auteur . - p.4039-4052.
Langues : Anglais (eng)
in Journal of Autism and Developmental Disorders > 50-11 (November 2020) . - p.4039-4052
Mots-clés : Activity recognition Autism Machine learning Wearable sensors Index. décimale : PER Périodiques Résumé : Traditional self-injurious behavior (SIB) management can place compliance demands on the caregiver and have low ecological validity and accuracy. To support an SIB monitoring system for autism spectrum disorder (ASD), we evaluated machine learning methods for detecting and distinguishing diverse SIB types. SIB episodes were captured with body-worn accelerometers from children with ASD and SIB. The highest detection accuracy was found with k-nearest neighbors and support vector machines (up to 99.1% for individuals and 94.6% for grouped participants), and classification efficiency was quite high (offline processing at?~?0.1 ms/observation). Our results provide an initial step toward creating a continuous and objective smart SIB monitoring system, which could in turn facilitate the future care of a pervasive concern in ASD. En ligne : http://dx.doi.org/10.1007/s10803-020-04463-x Permalink : https://www.cra-rhone-alpes.org/cid/opac_css/index.php?lvl=notice_display&id=432