Centre d'Information et de documentation du CRA Rhône-Alpes
CRA
Informations pratiques
-
Adresse
Centre d'information et de documentation
du CRA Rhône-Alpes
Centre Hospitalier le Vinatier
bât 211
95, Bd Pinel
69678 Bron CedexHoraires
Lundi au Vendredi
9h00-12h00 13h30-16h00Contact
Tél: +33(0)4 37 91 54 65
Mail
Fax: +33(0)4 37 91 54 37
-
Détail de l'auteur
Auteur Lorenzo LORENZO-LUACES |
Documents disponibles écrits par cet auteur (1)
Faire une suggestion Affiner la recherche
Commentary: Holy grails, personalized medicine, and the public health burden of psychopathology ? a reflection on Ahuvia et al. (2023) / Lorenzo LORENZO-LUACES in Journal of Child Psychology and Psychiatry, 65-2 (February 2024)
[article]
Titre : Commentary: Holy grails, personalized medicine, and the public health burden of psychopathology ? a reflection on Ahuvia et al. (2023) Type de document : Texte imprimé et/ou numérique Auteurs : Lorenzo LORENZO-LUACES, Auteur Article en page(s) : p.248-250 Index. décimale : PER Périodiques Résumé : Clinical psychology and psychiatry have many ?holy grails? or research findings that are widely sought after but remain elusive. The use of machine learning (ML) models for treatment selection is one of these holy grails. Ahuvia et al. (Journal of Child Psychology and Psychiatry, 2023) recently analyzed a large trial (n?=?996) of two distinct single-session interventions (SSIs) for internalizing distress and found little evidence that an ML model could predict differential treatment response. I discuss potential avenues for advancing SSI research. One avenue is the dissemination and implementation of SSIs, including how they interact with other treatments in routine care. Quantifying and critically questioning the promises of holy grails like ML models is sorely needed. Using simulation modeling to evaluate the relative merits of using ML models for treatment selection or using SSIs versus other treatment strategies may be another path forward. En ligne : https://doi.org/10.1111/jcpp.13914 Permalink : https://www.cra-rhone-alpes.org/cid/opac_css/index.php?lvl=notice_display&id=520
in Journal of Child Psychology and Psychiatry > 65-2 (February 2024) . - p.248-250[article] Commentary: Holy grails, personalized medicine, and the public health burden of psychopathology ? a reflection on Ahuvia et al. (2023) [Texte imprimé et/ou numérique] / Lorenzo LORENZO-LUACES, Auteur . - p.248-250.
in Journal of Child Psychology and Psychiatry > 65-2 (February 2024) . - p.248-250
Index. décimale : PER Périodiques Résumé : Clinical psychology and psychiatry have many ?holy grails? or research findings that are widely sought after but remain elusive. The use of machine learning (ML) models for treatment selection is one of these holy grails. Ahuvia et al. (Journal of Child Psychology and Psychiatry, 2023) recently analyzed a large trial (n?=?996) of two distinct single-session interventions (SSIs) for internalizing distress and found little evidence that an ML model could predict differential treatment response. I discuss potential avenues for advancing SSI research. One avenue is the dissemination and implementation of SSIs, including how they interact with other treatments in routine care. Quantifying and critically questioning the promises of holy grails like ML models is sorely needed. Using simulation modeling to evaluate the relative merits of using ML models for treatment selection or using SSIs versus other treatment strategies may be another path forward. En ligne : https://doi.org/10.1111/jcpp.13914 Permalink : https://www.cra-rhone-alpes.org/cid/opac_css/index.php?lvl=notice_display&id=520