
- <Centre d'Information et de documentation du CRA Rhône-Alpes
- CRA
- Informations pratiques
-
Adresse
Centre d'information et de documentation
Horaires
du CRA Rhône-Alpes
Centre Hospitalier le Vinatier
bât 211
95, Bd Pinel
69678 Bron CedexLundi au Vendredi
Contact
9h00-12h00 13h30-16h00Tél: +33(0)4 37 91 54 65
Mail
Fax: +33(0)4 37 91 54 37
-
Adresse
Auteur James F. GUSELLA
|
|
Documents disponibles écrits par cet auteur (2)
Faire une suggestion Affiner la rechercheLack of association of rare functional variants in TSC1/TSC2 genes with autism spectrum disorder / Samira BAHL in Molecular Autism, (March 2013)
![]()
[article]
Titre : Lack of association of rare functional variants in TSC1/TSC2 genes with autism spectrum disorder Type de document : texte imprimé Auteurs : Samira BAHL, Auteur ; Colby CHIANG, Auteur ; Roberta L. BEAUCHAMP, Auteur ; Benjamin M. NEALE, Auteur ; Mark J. DALY, Auteur ; James F. GUSELLA, Auteur ; Michael E. TALKOWSKI, Auteur ; Vijaya RAMESH, Auteur Année de publication : 2013 Article en page(s) : 11 p. Langues : Anglais (eng) Mots-clés : Autism spectrum disorder Tuberous sclerosis complex Mammalian target of rapamycin Next-generation sequencing Rare variants Index. décimale : PER Périodiques Résumé : BACKGROUND:Autism spectrum disorder (ASD) is reported in 30 to 60% of patients with tuberous sclerosis complex (TSC) but shared genetic mechanisms that exist between TSC-associated ASD and idiopathic ASD have yet to be determined. Through the small G-protein Rheb, the TSC proteins, hamartin and tuberin, negatively regulate mammalian target of rapamycin complex 1 (mTORC1) signaling. It is well established that mTORC1 plays a pivotal role in neuronal translation and connectivity, so dysregulation of mTORC1 signaling could be a common feature in many ASDs. Pam, an E3 ubiquitin ligase, binds to TSC proteins and regulates mTORC1 signaling in the CNS, and the FBXO45-Pam ubiquitin ligase complex plays an essential role in neurodevelopment by regulating synapse formation and growth. Since mounting evidence has established autism as a disorder of the synapses, we tested whether rare genetic variants in TSC1, TSC2, MYCBP2, RHEB and FBXO45, genes that regulate mTORC1 signaling and/or play a role in synapse development and function, contribute to the pathogenesis of idiopathic ASD.METHODS:Exons and splice junctions of TSC1, TSC2, MYCBP2, RHEB and FBXO45 were resequenced for 300 ASD trios from the Simons Simplex Collection (SSC) using a pooled PCR amplification and next-generation sequencing strategy, targeted to the discovery of deleterious coding variation. These detected, potentially functional, variants were confirmed by Sanger sequencing of the individual samples comprising the pools in which they were identified.RESULTS:We identified a total of 23 missense variants in MYCBP2, TSC1 and TSC2. These variants exhibited a near equal distribution between the proband and parental pools, with no statistical excess in ASD cases (P 0.05). All proband variants were inherited. No putative deleterious variants were confirmed in RHEB and FBXO45. Three intronic variants, identified as potential splice defects in MYCBP2 did not show aberrant splicing upon RNA assay. Overall, we did not find an over-representation of ASD causal variants in the genes studied to support them as contributors to autism susceptibility.CONCLUSIONS:We did not observe an enrichment of rare functional variants in TSC1 and TSC2 genes in our sample set of 300 trios. En ligne : http://dx.doi.org/10.1186/2040-2392-4-5 Permalink : https://www.cra-rhone-alpes.org/cid/opac_css/index.php?lvl=notice_display&id=202
in Molecular Autism > (March 2013) . - 11 p.[article] Lack of association of rare functional variants in TSC1/TSC2 genes with autism spectrum disorder [texte imprimé] / Samira BAHL, Auteur ; Colby CHIANG, Auteur ; Roberta L. BEAUCHAMP, Auteur ; Benjamin M. NEALE, Auteur ; Mark J. DALY, Auteur ; James F. GUSELLA, Auteur ; Michael E. TALKOWSKI, Auteur ; Vijaya RAMESH, Auteur . - 2013 . - 11 p.
Langues : Anglais (eng)
in Molecular Autism > (March 2013) . - 11 p.
Mots-clés : Autism spectrum disorder Tuberous sclerosis complex Mammalian target of rapamycin Next-generation sequencing Rare variants Index. décimale : PER Périodiques Résumé : BACKGROUND:Autism spectrum disorder (ASD) is reported in 30 to 60% of patients with tuberous sclerosis complex (TSC) but shared genetic mechanisms that exist between TSC-associated ASD and idiopathic ASD have yet to be determined. Through the small G-protein Rheb, the TSC proteins, hamartin and tuberin, negatively regulate mammalian target of rapamycin complex 1 (mTORC1) signaling. It is well established that mTORC1 plays a pivotal role in neuronal translation and connectivity, so dysregulation of mTORC1 signaling could be a common feature in many ASDs. Pam, an E3 ubiquitin ligase, binds to TSC proteins and regulates mTORC1 signaling in the CNS, and the FBXO45-Pam ubiquitin ligase complex plays an essential role in neurodevelopment by regulating synapse formation and growth. Since mounting evidence has established autism as a disorder of the synapses, we tested whether rare genetic variants in TSC1, TSC2, MYCBP2, RHEB and FBXO45, genes that regulate mTORC1 signaling and/or play a role in synapse development and function, contribute to the pathogenesis of idiopathic ASD.METHODS:Exons and splice junctions of TSC1, TSC2, MYCBP2, RHEB and FBXO45 were resequenced for 300 ASD trios from the Simons Simplex Collection (SSC) using a pooled PCR amplification and next-generation sequencing strategy, targeted to the discovery of deleterious coding variation. These detected, potentially functional, variants were confirmed by Sanger sequencing of the individual samples comprising the pools in which they were identified.RESULTS:We identified a total of 23 missense variants in MYCBP2, TSC1 and TSC2. These variants exhibited a near equal distribution between the proband and parental pools, with no statistical excess in ASD cases (P 0.05). All proband variants were inherited. No putative deleterious variants were confirmed in RHEB and FBXO45. Three intronic variants, identified as potential splice defects in MYCBP2 did not show aberrant splicing upon RNA assay. Overall, we did not find an over-representation of ASD causal variants in the genes studied to support them as contributors to autism susceptibility.CONCLUSIONS:We did not observe an enrichment of rare functional variants in TSC1 and TSC2 genes in our sample set of 300 trios. En ligne : http://dx.doi.org/10.1186/2040-2392-4-5 Permalink : https://www.cra-rhone-alpes.org/cid/opac_css/index.php?lvl=notice_display&id=202 Transcriptional consequences of MBD5 disruption in mouse brain and CRISPR-derived neurons / Catarina M. SEABRA in Molecular Autism, 11 (2020)
![]()
[article]
Titre : Transcriptional consequences of MBD5 disruption in mouse brain and CRISPR-derived neurons Type de document : texte imprimé Auteurs : Catarina M. SEABRA, Auteur ; Tatsiana ANEICHYK, Auteur ; Serkan ERDIN, Auteur ; Derek J.C. TAI, Auteur ; Celine E.F. DE ESCH, Auteur ; Parisa RAZAZ, Auteur ; Yu AN, Auteur ; Poornima MANAVALAN, Auteur ; Ashok RAGAVENDRAN, Auteur ; Alexei STORTCHEVOI, Auteur ; Clemer ABAD, Auteur ; Juan I. YOUNG, Auteur ; Patricia MACIEL, Auteur ; Michael E. TALKOWSKI, Auteur ; James F. GUSELLA, Auteur Article en page(s) : 45 p. Langues : Anglais (eng) Mots-clés : Autism spectrum disorder Crispr Mbd5 Mouse Ndd Neurons Transcriptomics Index. décimale : PER Périodiques Résumé : BACKGROUND: MBD5, encoding the methyl-CpG-binding domain 5 protein, has been proposed as a necessary and sufficient driver of the 2q23.1 microdeletion syndrome. De novo missense and protein-truncating variants from exome sequencing studies have directly implicated MBD5 in the etiology of autism spectrum disorder (ASD) and related neurodevelopmental disorders (NDDs). However, little is known concerning the specific function(s) of MBD5. METHODS: To gain insight into the complex interactions associated with alteration of MBD5 in individuals with ASD and related NDDs, we explored the transcriptional landscape of MBD5 haploinsufficiency across multiple mouse brain regions of a heterozygous hypomorphic Mbd5(+/GT) mouse model, and compared these results to CRISPR-mediated mutations of MBD5 in human iPSC-derived neuronal models. RESULTS: Gene expression analyses across three brain regions from Mbd5(+/GT) mice showed subtle transcriptional changes, with cortex displaying the most widespread changes following Mbd5 reduction, indicating context-dependent effects. Comparison with MBD5 reduction in human neuronal cells reinforced the context-dependence of gene expression changes due to MBD5 deficiency. Gene co-expression network analyses revealed gene clusters that were associated with reduced MBD5 expression and enriched for terms related to ciliary function. LIMITATIONS: These analyses included a limited number of mouse brain regions and neuronal models, and the effects of the gene knockdown are subtle. As such, these results will not reflect the full extent of MBD5 disruption across human brain regions during early neurodevelopment in ASD, or capture the diverse spectrum of cell-type-specific changes associated with MBD5 alterations. CONCLUSIONS: Our study points to modest and context-dependent transcriptional consequences of Mbd5 disruption in the brain. It also suggests a possible link between MBD5 and perturbations in ciliary function, which is an established pathogenic mechanism in developmental disorders and syndromes. En ligne : http://dx.doi.org/10.1186/s13229-020-00354-1 Permalink : https://www.cra-rhone-alpes.org/cid/opac_css/index.php?lvl=notice_display&id=427
in Molecular Autism > 11 (2020) . - 45 p.[article] Transcriptional consequences of MBD5 disruption in mouse brain and CRISPR-derived neurons [texte imprimé] / Catarina M. SEABRA, Auteur ; Tatsiana ANEICHYK, Auteur ; Serkan ERDIN, Auteur ; Derek J.C. TAI, Auteur ; Celine E.F. DE ESCH, Auteur ; Parisa RAZAZ, Auteur ; Yu AN, Auteur ; Poornima MANAVALAN, Auteur ; Ashok RAGAVENDRAN, Auteur ; Alexei STORTCHEVOI, Auteur ; Clemer ABAD, Auteur ; Juan I. YOUNG, Auteur ; Patricia MACIEL, Auteur ; Michael E. TALKOWSKI, Auteur ; James F. GUSELLA, Auteur . - 45 p.
Langues : Anglais (eng)
in Molecular Autism > 11 (2020) . - 45 p.
Mots-clés : Autism spectrum disorder Crispr Mbd5 Mouse Ndd Neurons Transcriptomics Index. décimale : PER Périodiques Résumé : BACKGROUND: MBD5, encoding the methyl-CpG-binding domain 5 protein, has been proposed as a necessary and sufficient driver of the 2q23.1 microdeletion syndrome. De novo missense and protein-truncating variants from exome sequencing studies have directly implicated MBD5 in the etiology of autism spectrum disorder (ASD) and related neurodevelopmental disorders (NDDs). However, little is known concerning the specific function(s) of MBD5. METHODS: To gain insight into the complex interactions associated with alteration of MBD5 in individuals with ASD and related NDDs, we explored the transcriptional landscape of MBD5 haploinsufficiency across multiple mouse brain regions of a heterozygous hypomorphic Mbd5(+/GT) mouse model, and compared these results to CRISPR-mediated mutations of MBD5 in human iPSC-derived neuronal models. RESULTS: Gene expression analyses across three brain regions from Mbd5(+/GT) mice showed subtle transcriptional changes, with cortex displaying the most widespread changes following Mbd5 reduction, indicating context-dependent effects. Comparison with MBD5 reduction in human neuronal cells reinforced the context-dependence of gene expression changes due to MBD5 deficiency. Gene co-expression network analyses revealed gene clusters that were associated with reduced MBD5 expression and enriched for terms related to ciliary function. LIMITATIONS: These analyses included a limited number of mouse brain regions and neuronal models, and the effects of the gene knockdown are subtle. As such, these results will not reflect the full extent of MBD5 disruption across human brain regions during early neurodevelopment in ASD, or capture the diverse spectrum of cell-type-specific changes associated with MBD5 alterations. CONCLUSIONS: Our study points to modest and context-dependent transcriptional consequences of Mbd5 disruption in the brain. It also suggests a possible link between MBD5 and perturbations in ciliary function, which is an established pathogenic mechanism in developmental disorders and syndromes. En ligne : http://dx.doi.org/10.1186/s13229-020-00354-1 Permalink : https://www.cra-rhone-alpes.org/cid/opac_css/index.php?lvl=notice_display&id=427

