
- <Centre d'Information et de documentation du CRA Rhône-Alpes
- CRA
- Informations pratiques
-
Adresse
Centre d'information et de documentation
Horaires
du CRA Rhône-Alpes
Centre Hospitalier le Vinatier
bât 211
95, Bd Pinel
69678 Bron CedexLundi au Vendredi
Contact
9h00-12h00 13h30-16h00Tél: +33(0)4 37 91 54 65
Mail
Fax: +33(0)4 37 91 54 37
-
Adresse
Détail de l'auteur
Auteur Michael S. BREEN |
Documents disponibles écrits par cet auteur (2)



Prospective and detailed behavioral phenotyping in DDX3X syndrome / L. TANG in Molecular Autism, 12 (2021)
![]()
[article]
Titre : Prospective and detailed behavioral phenotyping in DDX3X syndrome Type de document : Texte imprimé et/ou numérique Auteurs : L. TANG, Auteur ; T. LEVY, Auteur ; S. GUILLORY, Auteur ; Danielle B. HALPERN, Auteur ; J. ZWEIFACH, Auteur ; I. GISERMAN-KISS, Auteur ; J. H. FOSS-FEIG, Auteur ; Y. FRANK, Auteur ; R. LOZANO, Auteur ; P. BELANI, Auteur ; C. LAYTON, Auteur ; B. LERMAN, Auteur ; E. FROWNER, Auteur ; Michael S. BREEN, Auteur ; S. DE RUBEIS, Auteur ; A. KOSTIC, Auteur ; A. KOLEVZON, Auteur ; Joseph D. BUXBAUM, Auteur ; P. M. SIPER, Auteur ; D. E. GRICE, Auteur Article en page(s) : 36 p. Langues : Anglais (eng) Mots-clés : Autism DDX3X syndrome Developmental delay Genotype–phenotype correlation Intellectual disability Therapeutics, Acadia, and Sema4. PMS is the inventor of the SAND, which is licensed by Mount Sinai to Stoelting Co. No other competing interests to declare. Index. décimale : PER Périodiques Résumé : BACKGROUND: DDX3X syndrome is a recently identified genetic disorder that accounts for 1-3% of cases of unexplained developmental delay and/or intellectual disability (ID) in females, and is associated with motor and language delays, and autism spectrum disorder (ASD). To date, the published phenotypic characterization of this syndrome has primarily relied on medical record review; in addition, the behavioral dimensions of the syndrome have not been fully explored. METHODS: We carried out multi-day, prospective, detailed phenotyping of DDX3X syndrome in 14 females and 1 male, focusing on behavioral, psychological, and neurological measures. Three participants in this cohort were previously reported with limited phenotype information and were re-evaluated for this study. We compared results against population norms and contrasted phenotypes between individuals harboring either (1) protein-truncating variants or (2) missense variants or in-frame deletions. RESULTS: Eighty percent (80%) of individuals met criteria for ID, 60% for ASD and 53% for attention-deficit/hyperactivity disorder (ADHD). Motor and language delays were common as were sensory processing abnormalities. The cohort included 5 missense, 3 intronic/splice-site, 2 nonsense, 2 frameshift, 2 in-frame deletions, and one initiation codon variant. Genotype-phenotype correlations indicated that, on average, missense variants/in-frame deletions were associated with more severe language, motor, and adaptive deficits in comparison to protein-truncating variants. LIMITATIONS: Sample size is modest, however, DDX3X syndrome is a rare and underdiagnosed disorder. CONCLUSION: This study, representing a first, prospective, detailed characterization of DDX3X syndrome, extends our understanding of the neurobehavioral phenotype. Gold-standard diagnostic approaches demonstrated high rates of ID, ASD, and ADHD. In addition, sensory deficits were observed to be a key part of the syndrome. Even with a modest sample, we observe evidence for genotype-phenotype correlations with missense variants/in-frame deletions generally associated with more severe phenotypes. En ligne : http://dx.doi.org/10.1186/s13229-021-00431-z Permalink : https://www.cra-rhone-alpes.org/cid/opac_css/index.php?lvl=notice_display&id=459
in Molecular Autism > 12 (2021) . - 36 p.[article] Prospective and detailed behavioral phenotyping in DDX3X syndrome [Texte imprimé et/ou numérique] / L. TANG, Auteur ; T. LEVY, Auteur ; S. GUILLORY, Auteur ; Danielle B. HALPERN, Auteur ; J. ZWEIFACH, Auteur ; I. GISERMAN-KISS, Auteur ; J. H. FOSS-FEIG, Auteur ; Y. FRANK, Auteur ; R. LOZANO, Auteur ; P. BELANI, Auteur ; C. LAYTON, Auteur ; B. LERMAN, Auteur ; E. FROWNER, Auteur ; Michael S. BREEN, Auteur ; S. DE RUBEIS, Auteur ; A. KOSTIC, Auteur ; A. KOLEVZON, Auteur ; Joseph D. BUXBAUM, Auteur ; P. M. SIPER, Auteur ; D. E. GRICE, Auteur . - 36 p.
Langues : Anglais (eng)
in Molecular Autism > 12 (2021) . - 36 p.
Mots-clés : Autism DDX3X syndrome Developmental delay Genotype–phenotype correlation Intellectual disability Therapeutics, Acadia, and Sema4. PMS is the inventor of the SAND, which is licensed by Mount Sinai to Stoelting Co. No other competing interests to declare. Index. décimale : PER Périodiques Résumé : BACKGROUND: DDX3X syndrome is a recently identified genetic disorder that accounts for 1-3% of cases of unexplained developmental delay and/or intellectual disability (ID) in females, and is associated with motor and language delays, and autism spectrum disorder (ASD). To date, the published phenotypic characterization of this syndrome has primarily relied on medical record review; in addition, the behavioral dimensions of the syndrome have not been fully explored. METHODS: We carried out multi-day, prospective, detailed phenotyping of DDX3X syndrome in 14 females and 1 male, focusing on behavioral, psychological, and neurological measures. Three participants in this cohort were previously reported with limited phenotype information and were re-evaluated for this study. We compared results against population norms and contrasted phenotypes between individuals harboring either (1) protein-truncating variants or (2) missense variants or in-frame deletions. RESULTS: Eighty percent (80%) of individuals met criteria for ID, 60% for ASD and 53% for attention-deficit/hyperactivity disorder (ADHD). Motor and language delays were common as were sensory processing abnormalities. The cohort included 5 missense, 3 intronic/splice-site, 2 nonsense, 2 frameshift, 2 in-frame deletions, and one initiation codon variant. Genotype-phenotype correlations indicated that, on average, missense variants/in-frame deletions were associated with more severe language, motor, and adaptive deficits in comparison to protein-truncating variants. LIMITATIONS: Sample size is modest, however, DDX3X syndrome is a rare and underdiagnosed disorder. CONCLUSION: This study, representing a first, prospective, detailed characterization of DDX3X syndrome, extends our understanding of the neurobehavioral phenotype. Gold-standard diagnostic approaches demonstrated high rates of ID, ASD, and ADHD. In addition, sensory deficits were observed to be a key part of the syndrome. Even with a modest sample, we observe evidence for genotype-phenotype correlations with missense variants/in-frame deletions generally associated with more severe phenotypes. En ligne : http://dx.doi.org/10.1186/s13229-021-00431-z Permalink : https://www.cra-rhone-alpes.org/cid/opac_css/index.php?lvl=notice_display&id=459 Transcriptional signatures of participant-derived neural progenitor cells and neurons implicate altered Wnt signaling in Phelan-McDermid syndrome and autism / Michael S. BREEN in Molecular Autism, 11 (2020)
![]()
[article]
Titre : Transcriptional signatures of participant-derived neural progenitor cells and neurons implicate altered Wnt signaling in Phelan-McDermid syndrome and autism Type de document : Texte imprimé et/ou numérique Auteurs : Michael S. BREEN, Auteur ; Andrew BROWNE, Auteur ; Gabriel E. HOFFMAN, Auteur ; Sofia STATHOPOULOS, Auteur ; Kristen BRENNAND, Auteur ; Joseph D. BUXBAUM, Auteur ; Elodie DRAPEAU, Auteur Article en page(s) : 53 p. Langues : Anglais (eng) Mots-clés : Autism spectrum disorder Neural progenitor cells Neurons RNA-sequencing Stem cells Index. décimale : PER Périodiques Résumé : BACKGROUND: Phelan-McDermid syndrome (PMS) is a rare genetic disorder with high risk of autism spectrum disorder (ASD), intellectual disability, and language delay, and is caused by 22q13.3 deletions or mutations in the SHANK3 gene. To date, the molecular and pathway changes resulting from SHANK3 haploinsufficiency in PMS remain poorly understood. Uncovering these mechanisms is critical for understanding pathobiology of PMS and, ultimately, for the development of new therapeutic interventions. METHODS: We developed human-induced pluripotent stem cell (hiPSC)-based models of PMS by reprogramming peripheral blood samples from individuals with PMS (n = 7) and their unaffected siblings (n = 6). For each participant, up to three hiPSC clones were generated and differentiated into induced neural progenitor cells (hiPSC-NPCs; n = 39) and induced forebrain neurons (hiPSC-neurons; n = 41). Genome-wide RNA-sequencing was applied to explore transcriptional differences between PMS probands and unaffected siblings. RESULTS: Transcriptome analyses identified 391 differentially expressed genes (DEGs) in hiPSC-NPCs and 82 DEGs in hiPSC-neurons, when comparing cells from PMS probands and unaffected siblings (FDR 5%). Genes under-expressed in PMS were implicated in Wnt signaling, embryonic development, and protein translation, while over-expressed genes were enriched for pre- and postsynaptic density genes, regulation of synaptic plasticity, and G-protein-gated potassium channel activity. Gene co-expression network analysis identified two modules in hiPSC-neurons that were over-expressed in PMS, implicating postsynaptic signaling and GDP binding, and both modules harbored a significant enrichment of genetic risk loci for developmental delay and intellectual disability. Finally, PMS-associated genes were integrated with other ASD hiPSC transcriptome findings and several points of convergence were identified, indicating altered Wnt signaling and extracellular matrix. LIMITATIONS: Given the rarity of the condition, we could not carry out experimental validation in independent biological samples. In addition, functional and morphological phenotypes caused by loss of SHANK3 were not characterized here. CONCLUSIONS: This is the largest human neural sample analyzed in PMS. Genome-wide RNA-sequencing in hiPSC-derived neural cells from individuals with PMS revealed both shared and distinct transcriptional signatures across hiPSC-NPCs and hiPSC-neurons, including many genes implicated in risk for ASD, as well as specific neurobiological pathways, including the Wnt pathway. En ligne : http://dx.doi.org/10.1186/s13229-020-00355-0 Permalink : https://www.cra-rhone-alpes.org/cid/opac_css/index.php?lvl=notice_display&id=427
in Molecular Autism > 11 (2020) . - 53 p.[article] Transcriptional signatures of participant-derived neural progenitor cells and neurons implicate altered Wnt signaling in Phelan-McDermid syndrome and autism [Texte imprimé et/ou numérique] / Michael S. BREEN, Auteur ; Andrew BROWNE, Auteur ; Gabriel E. HOFFMAN, Auteur ; Sofia STATHOPOULOS, Auteur ; Kristen BRENNAND, Auteur ; Joseph D. BUXBAUM, Auteur ; Elodie DRAPEAU, Auteur . - 53 p.
Langues : Anglais (eng)
in Molecular Autism > 11 (2020) . - 53 p.
Mots-clés : Autism spectrum disorder Neural progenitor cells Neurons RNA-sequencing Stem cells Index. décimale : PER Périodiques Résumé : BACKGROUND: Phelan-McDermid syndrome (PMS) is a rare genetic disorder with high risk of autism spectrum disorder (ASD), intellectual disability, and language delay, and is caused by 22q13.3 deletions or mutations in the SHANK3 gene. To date, the molecular and pathway changes resulting from SHANK3 haploinsufficiency in PMS remain poorly understood. Uncovering these mechanisms is critical for understanding pathobiology of PMS and, ultimately, for the development of new therapeutic interventions. METHODS: We developed human-induced pluripotent stem cell (hiPSC)-based models of PMS by reprogramming peripheral blood samples from individuals with PMS (n = 7) and their unaffected siblings (n = 6). For each participant, up to three hiPSC clones were generated and differentiated into induced neural progenitor cells (hiPSC-NPCs; n = 39) and induced forebrain neurons (hiPSC-neurons; n = 41). Genome-wide RNA-sequencing was applied to explore transcriptional differences between PMS probands and unaffected siblings. RESULTS: Transcriptome analyses identified 391 differentially expressed genes (DEGs) in hiPSC-NPCs and 82 DEGs in hiPSC-neurons, when comparing cells from PMS probands and unaffected siblings (FDR 5%). Genes under-expressed in PMS were implicated in Wnt signaling, embryonic development, and protein translation, while over-expressed genes were enriched for pre- and postsynaptic density genes, regulation of synaptic plasticity, and G-protein-gated potassium channel activity. Gene co-expression network analysis identified two modules in hiPSC-neurons that were over-expressed in PMS, implicating postsynaptic signaling and GDP binding, and both modules harbored a significant enrichment of genetic risk loci for developmental delay and intellectual disability. Finally, PMS-associated genes were integrated with other ASD hiPSC transcriptome findings and several points of convergence were identified, indicating altered Wnt signaling and extracellular matrix. LIMITATIONS: Given the rarity of the condition, we could not carry out experimental validation in independent biological samples. In addition, functional and morphological phenotypes caused by loss of SHANK3 were not characterized here. CONCLUSIONS: This is the largest human neural sample analyzed in PMS. Genome-wide RNA-sequencing in hiPSC-derived neural cells from individuals with PMS revealed both shared and distinct transcriptional signatures across hiPSC-NPCs and hiPSC-neurons, including many genes implicated in risk for ASD, as well as specific neurobiological pathways, including the Wnt pathway. En ligne : http://dx.doi.org/10.1186/s13229-020-00355-0 Permalink : https://www.cra-rhone-alpes.org/cid/opac_css/index.php?lvl=notice_display&id=427