
- <Centre d'Information et de documentation du CRA Rhône-Alpes
- CRA
- Informations pratiques
-
Adresse
Centre d'information et de documentation
Horaires
du CRA Rhône-Alpes
Centre Hospitalier le Vinatier
bât 211
95, Bd Pinel
69678 Bron CedexLundi au Vendredi
Contact
9h00-12h00 13h30-16h00Tél: +33(0)4 37 91 54 65
Mail
Fax: +33(0)4 37 91 54 37
-
Adresse
Détail de l'auteur
Auteur H. M. LACHMAN |
Documents disponibles écrits par cet auteur (3)



CRISPR/Cas9-mediated heterozygous knockout of the autism gene CHD8 and characterization of its transcriptional networks in cerebral organoids derived from iPS cells / P. WANG in Molecular Autism, 8 (2017)
![]()
[article]
Titre : CRISPR/Cas9-mediated heterozygous knockout of the autism gene CHD8 and characterization of its transcriptional networks in cerebral organoids derived from iPS cells Type de document : Texte imprimé et/ou numérique Auteurs : P. WANG, Auteur ; R. MOKHTARI, Auteur ; E. PEDROSA, Auteur ; M. KIRSCHENBAUM, Auteur ; C. BAYRAK, Auteur ; D. ZHENG, Auteur ; H. M. LACHMAN, Auteur Article en page(s) : 11p. Langues : Anglais (eng) Mots-clés : Autism Spectrum Disorder/genetics Bipolar Disorder/genetics CRISPR-Cas Systems Cell Differentiation Cells, Cultured DNA-Binding Proteins/*genetics Gene Expression Profiling/*methods Gene Expression Regulation Gene Knockout Techniques *Gene Regulatory Networks Humans Induced Pluripotent Stem Cells/*cytology Mental Disorders/*genetics Mutation Organoids/*cytology Schizophrenia/genetics Sequence Analysis, RNA/*methods Telencephalon/*cytology Transcription Factors/*genetics *Autism *Beta-catenin *Bipolar disorder *Cancer *Dlx6-as1 *Distal-less homeobox *Gabaergic *Hmga2 *Schizophrenia *Tcf4 *Wnt *Znf132 Index. décimale : PER Périodiques Résumé : BACKGROUND: CHD8 (chromodomain helicase DNA-binding protein 8), which codes for a member of the CHD family of ATP-dependent chromatin-remodeling factors, is one of the most commonly mutated genes in autism spectrum disorders (ASD) identified in exome-sequencing studies. Loss of function mutations in the gene have also been found in schizophrenia (SZ) and intellectual disabilities and influence cancer cell proliferation. We previously reported an RNA-seq analysis carried out on neural progenitor cells (NPCs) and monolayer neurons derived from induced pluripotent stem (iPS) cells that were heterozygous for CHD8 knockout (KO) alleles generated using CRISPR-Cas9 gene editing. A significant number of ASD and SZ candidate genes were among those that were differentially expressed in a comparison of heterozygous KO lines (CHD8(+/-)) vs isogenic controls (CHD8(+/-)), including the SZ and bipolar disorder (BD) candidate gene TCF4, which was markedly upregulated in CHD8(+/-) neuronal cells. METHODS: In the current study, RNA-seq was carried out on CHD8(+/-) and isogenic control (CHD8(+/+)) cerebral organoids, which are 3-dimensional structures derived from iPS cells that model the developing human telencephalon. RESULTS: TCF4 expression was, again, significantly upregulated. Pathway analysis carried out on differentially expressed genes (DEGs) revealed an enrichment of genes involved in neurogenesis, neuronal differentiation, forebrain development, Wnt/beta-catenin signaling, and axonal guidance, similar to our previous study on NPCs and monolayer neurons. There was also significant overlap in our CHD8(+/-) DEGs with those found in a transcriptome analysis carried out by another group using cerebral organoids derived from a family with idiopathic ASD. Remarkably, the top DEG in our respective studies was the non-coding RNA DLX6-AS1, which was markedly upregulated in both studies; DLX6-AS1 regulates the expression of members of the DLX (distal-less homeobox) gene family. DLX1 was also upregulated in both studies. DLX genes code for transcription factors that play a key role in GABAergic interneuron differentiation. Significant overlap was also found in a transcriptome study carried out by another group using iPS cell-derived neurons from patients with BD, a condition characterized by dysregulated WNT/beta-catenin signaling in a subgroup of affected individuals. CONCLUSIONS: Overall, the findings show that distinct ASD, SZ, and BD candidate genes converge on common molecular targets-an important consideration for developing novel therapeutics in genetically heterogeneous complex traits. En ligne : http://dx.doi.org/10.1186/s13229-017-0124-1 Permalink : https://www.cra-rhone-alpes.org/cid/opac_css/index.php?lvl=notice_display&id=331
in Molecular Autism > 8 (2017) . - 11p.[article] CRISPR/Cas9-mediated heterozygous knockout of the autism gene CHD8 and characterization of its transcriptional networks in cerebral organoids derived from iPS cells [Texte imprimé et/ou numérique] / P. WANG, Auteur ; R. MOKHTARI, Auteur ; E. PEDROSA, Auteur ; M. KIRSCHENBAUM, Auteur ; C. BAYRAK, Auteur ; D. ZHENG, Auteur ; H. M. LACHMAN, Auteur . - 11p.
Langues : Anglais (eng)
in Molecular Autism > 8 (2017) . - 11p.
Mots-clés : Autism Spectrum Disorder/genetics Bipolar Disorder/genetics CRISPR-Cas Systems Cell Differentiation Cells, Cultured DNA-Binding Proteins/*genetics Gene Expression Profiling/*methods Gene Expression Regulation Gene Knockout Techniques *Gene Regulatory Networks Humans Induced Pluripotent Stem Cells/*cytology Mental Disorders/*genetics Mutation Organoids/*cytology Schizophrenia/genetics Sequence Analysis, RNA/*methods Telencephalon/*cytology Transcription Factors/*genetics *Autism *Beta-catenin *Bipolar disorder *Cancer *Dlx6-as1 *Distal-less homeobox *Gabaergic *Hmga2 *Schizophrenia *Tcf4 *Wnt *Znf132 Index. décimale : PER Périodiques Résumé : BACKGROUND: CHD8 (chromodomain helicase DNA-binding protein 8), which codes for a member of the CHD family of ATP-dependent chromatin-remodeling factors, is one of the most commonly mutated genes in autism spectrum disorders (ASD) identified in exome-sequencing studies. Loss of function mutations in the gene have also been found in schizophrenia (SZ) and intellectual disabilities and influence cancer cell proliferation. We previously reported an RNA-seq analysis carried out on neural progenitor cells (NPCs) and monolayer neurons derived from induced pluripotent stem (iPS) cells that were heterozygous for CHD8 knockout (KO) alleles generated using CRISPR-Cas9 gene editing. A significant number of ASD and SZ candidate genes were among those that were differentially expressed in a comparison of heterozygous KO lines (CHD8(+/-)) vs isogenic controls (CHD8(+/-)), including the SZ and bipolar disorder (BD) candidate gene TCF4, which was markedly upregulated in CHD8(+/-) neuronal cells. METHODS: In the current study, RNA-seq was carried out on CHD8(+/-) and isogenic control (CHD8(+/+)) cerebral organoids, which are 3-dimensional structures derived from iPS cells that model the developing human telencephalon. RESULTS: TCF4 expression was, again, significantly upregulated. Pathway analysis carried out on differentially expressed genes (DEGs) revealed an enrichment of genes involved in neurogenesis, neuronal differentiation, forebrain development, Wnt/beta-catenin signaling, and axonal guidance, similar to our previous study on NPCs and monolayer neurons. There was also significant overlap in our CHD8(+/-) DEGs with those found in a transcriptome analysis carried out by another group using cerebral organoids derived from a family with idiopathic ASD. Remarkably, the top DEG in our respective studies was the non-coding RNA DLX6-AS1, which was markedly upregulated in both studies; DLX6-AS1 regulates the expression of members of the DLX (distal-less homeobox) gene family. DLX1 was also upregulated in both studies. DLX genes code for transcription factors that play a key role in GABAergic interneuron differentiation. Significant overlap was also found in a transcriptome study carried out by another group using iPS cell-derived neurons from patients with BD, a condition characterized by dysregulated WNT/beta-catenin signaling in a subgroup of affected individuals. CONCLUSIONS: Overall, the findings show that distinct ASD, SZ, and BD candidate genes converge on common molecular targets-an important consideration for developing novel therapeutics in genetically heterogeneous complex traits. En ligne : http://dx.doi.org/10.1186/s13229-017-0124-1 Permalink : https://www.cra-rhone-alpes.org/cid/opac_css/index.php?lvl=notice_display&id=331 Modeling the neuropsychiatric manifestations of Lowe syndrome using induced pluripotent stem cells: defective F-actin polymerization and WAVE-1 expression in neuronal cells / J. BARNES in Molecular Autism, 9 (2018)
![]()
[article]
Titre : Modeling the neuropsychiatric manifestations of Lowe syndrome using induced pluripotent stem cells: defective F-actin polymerization and WAVE-1 expression in neuronal cells Type de document : Texte imprimé et/ou numérique Auteurs : J. BARNES, Auteur ; F. SALAS, Auteur ; R. MOKHTARI, Auteur ; H. DOLSTRA, Auteur ; E. PEDROSA, Auteur ; H. M. LACHMAN, Auteur Article en page(s) : 44p. Langues : Anglais (eng) Mots-clés : Autism Cataract Dent disease Developmental inpp5b Induced pluripotent stem cells Intellectual Lowe syndrome ocrl Renal Index. décimale : PER Périodiques Résumé : Background: Lowe syndrome (LS) is a rare genetic disorder caused by loss of function mutations in the X-linked gene, OCRL, which codes for inositol polyphosphate 5-phosphatase. LS is characterized by the triad of congenital cataracts, neurodevelopmental impairment (primarily intellectual and developmental disabilities [IDD]), and renal proximal tubular dysfunction. Studies carried out over the years have shown that hypomorphic mutations in OCRL adversely affect endosome recycling and actin polymerization in kidney cells and patient-derived fibroblasts. The renal problem has been traced to an impaired recycling of megalin, a multi-ligand receptor that plays a key role in the reuptake of lipoproteins, amino acids, vitamin-binding proteins, and hormones. However, the neurodevelopmental aspects of the disorder have been difficult to study because the mouse knockout (KO) model does not display LS-related phenotypes. Fortunately, the discovery of induced pluripotent stem (iPS) cells has provided an opportunity to grow patient-specific neurons, which can be used to model neurodevelopmental disorders in vitro, as demonstrated in the many studies that have been published in the past few years in autism spectrum disorders (ASD), schizophrenia (SZ), bipolar disorder (BD), and IDD. Methods: We now report the first findings in neurons and neural progenitor cells (NPCs) generated from iPS cells derived from patients with LS and their typically developing male siblings, as well as an isogenic line in which the OCRL gene has been incapacitated by a null mutation generated using CRISPR-Cas9 gene editing. Results: We show that neuronal cells derived from patient-specific iPS cells containing hypomorphic variants are deficient in their capacity to produce F-filamentous actin (F-actin) fibers. Abnormalities were also found in the expression of WAVE-1, a component of the WAVE regulatory complex (WRC) that regulates actin polymerization. Curiously, neuronal cells carrying the engineered OCRL null mutation, in which OCRL protein is not expressed, did not show similar defects in F-actin and WAVE-1 expression. This is similar to the apparent lack of a phenotype in the mouse Ocrl KO model, and suggests that in the complete absence of OCRL protein, as opposed to producing a dysfunctional protein, as seen with the hypomorphic variants, there is partial compensation for the F-actin/WAVE-1 regulating function of OCRL. Conclusions: Alterations in F-actin polymerization and WRC have been found in a number of genetic subgroups of IDD and ASD. Thus, LS, a very rare genetic condition, is linked to a more expansive family of genes responsible for neurodevelopmental disorders that have shared pathogenic features. En ligne : https://dx.doi.org/10.1186/s13229-018-0227-3 Permalink : https://www.cra-rhone-alpes.org/cid/opac_css/index.php?lvl=notice_display&id=371
in Molecular Autism > 9 (2018) . - 44p.[article] Modeling the neuropsychiatric manifestations of Lowe syndrome using induced pluripotent stem cells: defective F-actin polymerization and WAVE-1 expression in neuronal cells [Texte imprimé et/ou numérique] / J. BARNES, Auteur ; F. SALAS, Auteur ; R. MOKHTARI, Auteur ; H. DOLSTRA, Auteur ; E. PEDROSA, Auteur ; H. M. LACHMAN, Auteur . - 44p.
Langues : Anglais (eng)
in Molecular Autism > 9 (2018) . - 44p.
Mots-clés : Autism Cataract Dent disease Developmental inpp5b Induced pluripotent stem cells Intellectual Lowe syndrome ocrl Renal Index. décimale : PER Périodiques Résumé : Background: Lowe syndrome (LS) is a rare genetic disorder caused by loss of function mutations in the X-linked gene, OCRL, which codes for inositol polyphosphate 5-phosphatase. LS is characterized by the triad of congenital cataracts, neurodevelopmental impairment (primarily intellectual and developmental disabilities [IDD]), and renal proximal tubular dysfunction. Studies carried out over the years have shown that hypomorphic mutations in OCRL adversely affect endosome recycling and actin polymerization in kidney cells and patient-derived fibroblasts. The renal problem has been traced to an impaired recycling of megalin, a multi-ligand receptor that plays a key role in the reuptake of lipoproteins, amino acids, vitamin-binding proteins, and hormones. However, the neurodevelopmental aspects of the disorder have been difficult to study because the mouse knockout (KO) model does not display LS-related phenotypes. Fortunately, the discovery of induced pluripotent stem (iPS) cells has provided an opportunity to grow patient-specific neurons, which can be used to model neurodevelopmental disorders in vitro, as demonstrated in the many studies that have been published in the past few years in autism spectrum disorders (ASD), schizophrenia (SZ), bipolar disorder (BD), and IDD. Methods: We now report the first findings in neurons and neural progenitor cells (NPCs) generated from iPS cells derived from patients with LS and their typically developing male siblings, as well as an isogenic line in which the OCRL gene has been incapacitated by a null mutation generated using CRISPR-Cas9 gene editing. Results: We show that neuronal cells derived from patient-specific iPS cells containing hypomorphic variants are deficient in their capacity to produce F-filamentous actin (F-actin) fibers. Abnormalities were also found in the expression of WAVE-1, a component of the WAVE regulatory complex (WRC) that regulates actin polymerization. Curiously, neuronal cells carrying the engineered OCRL null mutation, in which OCRL protein is not expressed, did not show similar defects in F-actin and WAVE-1 expression. This is similar to the apparent lack of a phenotype in the mouse Ocrl KO model, and suggests that in the complete absence of OCRL protein, as opposed to producing a dysfunctional protein, as seen with the hypomorphic variants, there is partial compensation for the F-actin/WAVE-1 regulating function of OCRL. Conclusions: Alterations in F-actin polymerization and WRC have been found in a number of genetic subgroups of IDD and ASD. Thus, LS, a very rare genetic condition, is linked to a more expansive family of genes responsible for neurodevelopmental disorders that have shared pathogenic features. En ligne : https://dx.doi.org/10.1186/s13229-018-0227-3 Permalink : https://www.cra-rhone-alpes.org/cid/opac_css/index.php?lvl=notice_display&id=371 Transcriptome analysis of microglia in a mouse model of Rett syndrome: differential expression of genes associated with microglia/macrophage activation and cellular stress / D. ZHAO in Molecular Autism, 8 (2017)
![]()
[article]
Titre : Transcriptome analysis of microglia in a mouse model of Rett syndrome: differential expression of genes associated with microglia/macrophage activation and cellular stress Type de document : Texte imprimé et/ou numérique Auteurs : D. ZHAO, Auteur ; R. MOKHTARI, Auteur ; E. PEDROSA, Auteur ; R. BIRNBAUM, Auteur ; D. ZHENG, Auteur ; H. M. LACHMAN, Auteur Article en page(s) : 17p. Langues : Anglais (eng) Mots-clés : Animals Disease Models, Animal Female Gene Expression Profiling/*methods Gene Expression Regulation Heat-Shock Proteins/genetics Humans Macrophage Activation Macrophages/*cytology Methyl-CpG-Binding Protein 2/*deficiency Mice Microglia/*metabolism Mutation Oxidative Stress Rett Syndrome/*genetics Sequence Analysis, RNA/*methods *Autism *Heat shock *Innate immune system *M1 activation *M2 activation *Microglia *Rett syndrome *Schizophrenia Index. décimale : PER Périodiques Résumé : BACKGROUND: Rett syndrome (RTT) is a severe, neurodevelopmental disorder primarily affecting girls, characterized by progressive loss of cognitive, social, and motor skills after a relatively brief period of typical development. It is usually due to de novo loss of function mutations in the X-linked gene, MeCP2, which codes for the gene expression and chromatin regulator, methyl-CpG binding protein 2. Although the behavioral phenotype appears to be primarily due to neuronal Mecp2 deficiency in mice, other cell types, including astrocytes and oligodendrocytes, also appear to contribute to some aspects of the RTT phenotype. In addition, microglia may also play a role. However, the effect of Mecp2 deficiency in microglia on RTT pathogenesis is controversial. METHODS: In the current study, we applied whole transcriptome analysis using RNA-seq to gain insight into molecular pathways in microglia that might be dysregulated during the transition, in female mice heterozygous for an Mecp2-null allele (Mecp2(+/-); Het), from the pre-phenotypic (5 weeks) to the phenotypic phases (24 weeks). RESULTS: We found a significant overlap in differentially expressed genes (DEGs) with genes involved in regulating the extracellular matrix, and those that are activated or inhibited when macrophages and microglia are stimulated towards the M1 and M2 activation states. However, the M1- and M2-associated genes were different in the 5- and 24-week samples. In addition, a substantial decrease in the expression of nine members of the heat shock protein (HSP) family was found in the 5-week samples, but not at 24 weeks. CONCLUSIONS: These findings suggest that microglia from pre-phenotypic and phenotypic female mice are activated in a manner different from controls and that pre-phenotypic female mice may have alterations in their capacity to response to heat stress and other stressors that function through the HSP pathway. En ligne : http://dx.doi.org/10.1186/s13229-017-0134-z Permalink : https://www.cra-rhone-alpes.org/cid/opac_css/index.php?lvl=notice_display&id=331
in Molecular Autism > 8 (2017) . - 17p.[article] Transcriptome analysis of microglia in a mouse model of Rett syndrome: differential expression of genes associated with microglia/macrophage activation and cellular stress [Texte imprimé et/ou numérique] / D. ZHAO, Auteur ; R. MOKHTARI, Auteur ; E. PEDROSA, Auteur ; R. BIRNBAUM, Auteur ; D. ZHENG, Auteur ; H. M. LACHMAN, Auteur . - 17p.
Langues : Anglais (eng)
in Molecular Autism > 8 (2017) . - 17p.
Mots-clés : Animals Disease Models, Animal Female Gene Expression Profiling/*methods Gene Expression Regulation Heat-Shock Proteins/genetics Humans Macrophage Activation Macrophages/*cytology Methyl-CpG-Binding Protein 2/*deficiency Mice Microglia/*metabolism Mutation Oxidative Stress Rett Syndrome/*genetics Sequence Analysis, RNA/*methods *Autism *Heat shock *Innate immune system *M1 activation *M2 activation *Microglia *Rett syndrome *Schizophrenia Index. décimale : PER Périodiques Résumé : BACKGROUND: Rett syndrome (RTT) is a severe, neurodevelopmental disorder primarily affecting girls, characterized by progressive loss of cognitive, social, and motor skills after a relatively brief period of typical development. It is usually due to de novo loss of function mutations in the X-linked gene, MeCP2, which codes for the gene expression and chromatin regulator, methyl-CpG binding protein 2. Although the behavioral phenotype appears to be primarily due to neuronal Mecp2 deficiency in mice, other cell types, including astrocytes and oligodendrocytes, also appear to contribute to some aspects of the RTT phenotype. In addition, microglia may also play a role. However, the effect of Mecp2 deficiency in microglia on RTT pathogenesis is controversial. METHODS: In the current study, we applied whole transcriptome analysis using RNA-seq to gain insight into molecular pathways in microglia that might be dysregulated during the transition, in female mice heterozygous for an Mecp2-null allele (Mecp2(+/-); Het), from the pre-phenotypic (5 weeks) to the phenotypic phases (24 weeks). RESULTS: We found a significant overlap in differentially expressed genes (DEGs) with genes involved in regulating the extracellular matrix, and those that are activated or inhibited when macrophages and microglia are stimulated towards the M1 and M2 activation states. However, the M1- and M2-associated genes were different in the 5- and 24-week samples. In addition, a substantial decrease in the expression of nine members of the heat shock protein (HSP) family was found in the 5-week samples, but not at 24 weeks. CONCLUSIONS: These findings suggest that microglia from pre-phenotypic and phenotypic female mice are activated in a manner different from controls and that pre-phenotypic female mice may have alterations in their capacity to response to heat stress and other stressors that function through the HSP pathway. En ligne : http://dx.doi.org/10.1186/s13229-017-0134-z Permalink : https://www.cra-rhone-alpes.org/cid/opac_css/index.php?lvl=notice_display&id=331