
- <Centre d'Information et de documentation du CRA Rhône-Alpes
- CRA
- Informations pratiques
-
Adresse
Centre d'information et de documentation
Horaires
du CRA Rhône-Alpes
Centre Hospitalier le Vinatier
bât 211
95, Bd Pinel
69678 Bron CedexLundi au Vendredi
Contact
9h00-12h00 13h30-16h00Tél: +33(0)4 37 91 54 65
Mail
Fax: +33(0)4 37 91 54 37
-
Adresse
Détail de l'auteur
Auteur Jill L. SILVERMAN |
Documents disponibles écrits par cet auteur (3)



Titre : Behavioral Evaluation of Genetic Mouse Models of Autism Type de document : Texte imprimé et/ou numérique Auteurs : Mu YANG, Auteur ; Maria Luisa SCATTONI, Auteur ; Kathryn K. CHADMAN, Auteur ; Jill L. SILVERMAN, Auteur ; Jacqueline N. CRAWLEY, Auteur Année de publication : 2011 Importance : p.906-934 Langues : Anglais (eng) Index. décimale : AUT-B AUT-B - L'Autisme - Ouvrages généraux et scientifiques Permalink : https://www.cra-rhone-alpes.org/cid/opac_css/index.php?lvl=notice_display&id=140 Behavioral Evaluation of Genetic Mouse Models of Autism [Texte imprimé et/ou numérique] / Mu YANG, Auteur ; Maria Luisa SCATTONI, Auteur ; Kathryn K. CHADMAN, Auteur ; Jill L. SILVERMAN, Auteur ; Jacqueline N. CRAWLEY, Auteur . - 2011 . - p.906-934.
Langues : Anglais (eng)
Index. décimale : AUT-B AUT-B - L'Autisme - Ouvrages généraux et scientifiques Permalink : https://www.cra-rhone-alpes.org/cid/opac_css/index.php?lvl=notice_display&id=140 Exemplaires
Code-barres Cote Support Localisation Section Disponibilité aucun exemplaire Gait as a quantitative translational outcome measure in Angelman syndrome / Stela P. PETKOVA in Autism Research, 15-5 (May 2022)
![]()
[article]
Titre : Gait as a quantitative translational outcome measure in Angelman syndrome Type de document : Texte imprimé et/ou numérique Auteurs : Stela P. PETKOVA, Auteur ; Anna ADHIKARI, Auteur ; Elizabeth L. BERG, Auteur ; Timothy A. FENTON, Auteur ; Jessica DUIS, Auteur ; Jill L. SILVERMAN, Auteur Article en page(s) : p.821-833 Langues : Anglais (eng) Mots-clés : Angelman Syndrome/genetics Animals Autism Spectrum Disorder Disease Models, Animal Gait/physiology Humans Mice Movement Disorders Muscle Hypotonia Outcome Assessment, Health Care Angelman syndrome animal models autism behavior gait genetics longitudinal motor mouse models neurodevelopment Index. décimale : PER Périodiques Résumé : Angelman syndrome (AS) is a genetic neurodevelopmental disorder characterized by developmental delay, lack of speech, seizures, intellectual disability, hypotonia, and motor coordination deficits. Motor abilities are an important outcome measure in AS as they comprise a broad repertoire of metrics including ataxia, hypotonia, delayed ambulation, crouched gait, and poor posture, and motor dysfunction affects nearly every individual with AS. Guided by collaborative work with AS clinicians studying gait, the goal of this study was to perform an in-depth gait analysis using the automated treadmill assay, DigiGait. Our hypothesis is that gait presents a strong opportunity for a reliable, quantitative, and translational metric that can serve to evaluate novel pharmacological, dietary, and genetic therapies. In this study, we used an automated gait analysis system, in addition to standard motor behavioral assays, to evaluate components of motor, exploration, coordination, balance, and gait impairments across the lifespan in an AS mouse model. Our study demonstrated marked global motoric deficits in AS mice, corroborating previous reports. Uniquely, this is the first report of nuanced aberrations in quantitative spatial and temporal components of gait in AS mice compared to sex- and age-matched wildtype littermates followed longitudinally using metrics that are analogous in AS individuals. Our findings contribute evidence toward the use of nuanced motor outcomes (i.e., gait) as valuable and translationally powerful metrics for therapeutic development for AS, as well as other genetic neurodevelopmental syndromes. LAY SUMMARY: Movement disorders affect nearly every individual with Angelman Syndrome (AS). The most common motor problems include spasticity, ataxia of gait (observed in the majority of ambulatory individuals), tremor, and muscle weakness. This report focused on quantifying various spatial and temporal aspects of gait as a reliable, translatable outcome measure in a preclinical AS model longitudinally across development. By increasing the number of translational, reliable, functional outcome measures in our wheelhouse, we will create more opportunities for identifying and advancing successful medical interventions. En ligne : http://dx.doi.org/10.1002/aur.2697 Permalink : https://www.cra-rhone-alpes.org/cid/opac_css/index.php?lvl=notice_display&id=473
in Autism Research > 15-5 (May 2022) . - p.821-833[article] Gait as a quantitative translational outcome measure in Angelman syndrome [Texte imprimé et/ou numérique] / Stela P. PETKOVA, Auteur ; Anna ADHIKARI, Auteur ; Elizabeth L. BERG, Auteur ; Timothy A. FENTON, Auteur ; Jessica DUIS, Auteur ; Jill L. SILVERMAN, Auteur . - p.821-833.
Langues : Anglais (eng)
in Autism Research > 15-5 (May 2022) . - p.821-833
Mots-clés : Angelman Syndrome/genetics Animals Autism Spectrum Disorder Disease Models, Animal Gait/physiology Humans Mice Movement Disorders Muscle Hypotonia Outcome Assessment, Health Care Angelman syndrome animal models autism behavior gait genetics longitudinal motor mouse models neurodevelopment Index. décimale : PER Périodiques Résumé : Angelman syndrome (AS) is a genetic neurodevelopmental disorder characterized by developmental delay, lack of speech, seizures, intellectual disability, hypotonia, and motor coordination deficits. Motor abilities are an important outcome measure in AS as they comprise a broad repertoire of metrics including ataxia, hypotonia, delayed ambulation, crouched gait, and poor posture, and motor dysfunction affects nearly every individual with AS. Guided by collaborative work with AS clinicians studying gait, the goal of this study was to perform an in-depth gait analysis using the automated treadmill assay, DigiGait. Our hypothesis is that gait presents a strong opportunity for a reliable, quantitative, and translational metric that can serve to evaluate novel pharmacological, dietary, and genetic therapies. In this study, we used an automated gait analysis system, in addition to standard motor behavioral assays, to evaluate components of motor, exploration, coordination, balance, and gait impairments across the lifespan in an AS mouse model. Our study demonstrated marked global motoric deficits in AS mice, corroborating previous reports. Uniquely, this is the first report of nuanced aberrations in quantitative spatial and temporal components of gait in AS mice compared to sex- and age-matched wildtype littermates followed longitudinally using metrics that are analogous in AS individuals. Our findings contribute evidence toward the use of nuanced motor outcomes (i.e., gait) as valuable and translationally powerful metrics for therapeutic development for AS, as well as other genetic neurodevelopmental syndromes. LAY SUMMARY: Movement disorders affect nearly every individual with Angelman Syndrome (AS). The most common motor problems include spasticity, ataxia of gait (observed in the majority of ambulatory individuals), tremor, and muscle weakness. This report focused on quantifying various spatial and temporal aspects of gait as a reliable, translatable outcome measure in a preclinical AS model longitudinally across development. By increasing the number of translational, reliable, functional outcome measures in our wheelhouse, we will create more opportunities for identifying and advancing successful medical interventions. En ligne : http://dx.doi.org/10.1002/aur.2697 Permalink : https://www.cra-rhone-alpes.org/cid/opac_css/index.php?lvl=notice_display&id=473 Haploinsufficiency of the autism-associated Shank3 gene leads to deficits in synaptic function, social interaction, and social communication / Ozlem BOZDAGI in Molecular Autism, (December 2010)
![]()
[article]
Titre : Haploinsufficiency of the autism-associated Shank3 gene leads to deficits in synaptic function, social interaction, and social communication Type de document : Texte imprimé et/ou numérique Auteurs : Ozlem BOZDAGI, Auteur ; Takeshi SAKURAI, Auteur ; Danae PAPAPETROU, Auteur ; Xiaobin WANG, Auteur ; Dara L. DICKSTEIN, Auteur ; Nagahide TAKAHASHI, Auteur ; Yuji KAJIWARA, Auteur ; Mu YANG, Auteur ; Adam M. KATZ, Auteur ; Maria Luisa SCATTONI, Auteur ; Mark J. HARRIS, Auteur ; Roheeni SAXENA, Auteur ; Jill L. SILVERMAN, Auteur ; Jacqueline N. CRAWLEY, Auteur ; Qiang ZHOU, Auteur ; Patrick R. HOF, Auteur ; Joseph D. BUXBAUM, Auteur Année de publication : 2010 Article en page(s) : 47 p. Langues : Anglais (eng) Index. décimale : PER Périodiques Résumé : SHANK3 is a protein in the core of the postsynaptic density (PSD) and has a critical role in recruiting many key functional elements to the PSD and to the synapse, including components of alpha-amino-3-hydroxyl-5-methyl-4-isoxazole-propionic acid (AMPA), metabotropic glutamate (mGlu) and N-methyl-D-aspartic acid (NMDA) glutamate receptors, as well as cytoskeletal elements. Loss of a functional copy of the SHANK3 gene leads to the neurobehavioral manifestations of 22q13 deletion syndrome and/or to autism spectrum disorders. The goal of this study was to examine the effects of haploinsufficiency of full-length Shank3 in mice, focusing on synaptic development, transmission and plasticity, as well as on social behaviors, as a model for understanding SHANK3 haploinsufficiency in humans.
Methods
We used mice with a targeted disruption of Shank3 in which exons coding for the ankyrin repeat domain were deleted and expression of full-length Shank3 was disrupted. We studied synaptic transmission and plasticity by multiple methods, including patch-clamp whole cell recording, two-photon time-lapse imaging and extracellular recordings of field excitatory postsynaptic potentials. We also studied the density of GluR1-immunoreactive puncta in the CA1 stratum radiatum and carried out assessments of social behaviors.
Results
In Shank3 heterozygous mice, there was reduced amplitude of miniature excitatory postsynaptic currents from hippocampal CA1 pyramidal neurons and the input-output (I/O) relationship at Schaffer collateral-CA1 synapses in acute hippocampal slices was significantly depressed; both of these findings indicate a reduction in basal neurotransmission. Studies with specific inhibitors demonstrated that the decrease in basal transmission reflected reduced AMPA receptor-mediated transmission. This was further supported by the observation of reduced numbers of GluR1-immunoreactive puncta in the stratum radiatum. Long-term potentiation (LTP), induced either with theta-burst pairing (TBP) or high-frequency stimulation, was impaired in Shank3 heterozygous mice, with no significant change in long-term depression (LTD). In concordance with the LTP results, persistent expansion of spines was observed in control mice after TBP-induced LTP; however, only transient spine expansion was observed in Shank3 heterozygous mice. Male Shank3 heterozygotes displayed less social sniffing and emitted fewer ultrasonic vocalizations during interactions with estrus female mice, as compared to wild-type littermate controls.
Conclusions
We documented specific deficits in synaptic function and plasticity, along with reduced reciprocal social interactions in Shank3 heterozygous mice. Our results are consistent with altered synaptic development and function in Shank3 haploinsufficiency, highlighting the importance of Shank3 in synaptic function and supporting a link between deficits in synapse function and neurodevelopmental disorders. The reduced glutamatergic transmission that we observed in the Shank3 heterozygous mice represents an interesting therapeutic target in Shank3-haploinsufficiency syndromes.En ligne : http://dx.doi.org/10.1186/2040-2392-1-15 Permalink : https://www.cra-rhone-alpes.org/cid/opac_css/index.php?lvl=notice_display&id=114
in Molecular Autism > (December 2010) . - 47 p.[article] Haploinsufficiency of the autism-associated Shank3 gene leads to deficits in synaptic function, social interaction, and social communication [Texte imprimé et/ou numérique] / Ozlem BOZDAGI, Auteur ; Takeshi SAKURAI, Auteur ; Danae PAPAPETROU, Auteur ; Xiaobin WANG, Auteur ; Dara L. DICKSTEIN, Auteur ; Nagahide TAKAHASHI, Auteur ; Yuji KAJIWARA, Auteur ; Mu YANG, Auteur ; Adam M. KATZ, Auteur ; Maria Luisa SCATTONI, Auteur ; Mark J. HARRIS, Auteur ; Roheeni SAXENA, Auteur ; Jill L. SILVERMAN, Auteur ; Jacqueline N. CRAWLEY, Auteur ; Qiang ZHOU, Auteur ; Patrick R. HOF, Auteur ; Joseph D. BUXBAUM, Auteur . - 2010 . - 47 p.
Langues : Anglais (eng)
in Molecular Autism > (December 2010) . - 47 p.
Index. décimale : PER Périodiques Résumé : SHANK3 is a protein in the core of the postsynaptic density (PSD) and has a critical role in recruiting many key functional elements to the PSD and to the synapse, including components of alpha-amino-3-hydroxyl-5-methyl-4-isoxazole-propionic acid (AMPA), metabotropic glutamate (mGlu) and N-methyl-D-aspartic acid (NMDA) glutamate receptors, as well as cytoskeletal elements. Loss of a functional copy of the SHANK3 gene leads to the neurobehavioral manifestations of 22q13 deletion syndrome and/or to autism spectrum disorders. The goal of this study was to examine the effects of haploinsufficiency of full-length Shank3 in mice, focusing on synaptic development, transmission and plasticity, as well as on social behaviors, as a model for understanding SHANK3 haploinsufficiency in humans.
Methods
We used mice with a targeted disruption of Shank3 in which exons coding for the ankyrin repeat domain were deleted and expression of full-length Shank3 was disrupted. We studied synaptic transmission and plasticity by multiple methods, including patch-clamp whole cell recording, two-photon time-lapse imaging and extracellular recordings of field excitatory postsynaptic potentials. We also studied the density of GluR1-immunoreactive puncta in the CA1 stratum radiatum and carried out assessments of social behaviors.
Results
In Shank3 heterozygous mice, there was reduced amplitude of miniature excitatory postsynaptic currents from hippocampal CA1 pyramidal neurons and the input-output (I/O) relationship at Schaffer collateral-CA1 synapses in acute hippocampal slices was significantly depressed; both of these findings indicate a reduction in basal neurotransmission. Studies with specific inhibitors demonstrated that the decrease in basal transmission reflected reduced AMPA receptor-mediated transmission. This was further supported by the observation of reduced numbers of GluR1-immunoreactive puncta in the stratum radiatum. Long-term potentiation (LTP), induced either with theta-burst pairing (TBP) or high-frequency stimulation, was impaired in Shank3 heterozygous mice, with no significant change in long-term depression (LTD). In concordance with the LTP results, persistent expansion of spines was observed in control mice after TBP-induced LTP; however, only transient spine expansion was observed in Shank3 heterozygous mice. Male Shank3 heterozygotes displayed less social sniffing and emitted fewer ultrasonic vocalizations during interactions with estrus female mice, as compared to wild-type littermate controls.
Conclusions
We documented specific deficits in synaptic function and plasticity, along with reduced reciprocal social interactions in Shank3 heterozygous mice. Our results are consistent with altered synaptic development and function in Shank3 haploinsufficiency, highlighting the importance of Shank3 in synaptic function and supporting a link between deficits in synapse function and neurodevelopmental disorders. The reduced glutamatergic transmission that we observed in the Shank3 heterozygous mice represents an interesting therapeutic target in Shank3-haploinsufficiency syndromes.En ligne : http://dx.doi.org/10.1186/2040-2392-1-15 Permalink : https://www.cra-rhone-alpes.org/cid/opac_css/index.php?lvl=notice_display&id=114