
- <Centre d'Information et de documentation du CRA Rhône-Alpes
- CRA
- Informations pratiques
-
Adresse
Centre d'information et de documentation
Horaires
du CRA Rhône-Alpes
Centre Hospitalier le Vinatier
bât 211
95, Bd Pinel
69678 Bron CedexLundi au Vendredi
Contact
9h00-12h00 13h30-16h00Tél: +33(0)4 37 91 54 65
Mail
Fax: +33(0)4 37 91 54 37
-
Adresse
Auteur Federica FILICE
|
|
Documents disponibles écrits par cet auteur (2)
Faire une suggestion Affiner la recherche17-beta estradiol increases parvalbumin levels in Pvalb heterozygous mice and attenuates behavioral phenotypes with relevance to autism core symptoms / Federica FILICE in Molecular Autism, 9 (2018)
![]()
[article]
Titre : 17-beta estradiol increases parvalbumin levels in Pvalb heterozygous mice and attenuates behavioral phenotypes with relevance to autism core symptoms Type de document : texte imprimé Auteurs : Federica FILICE, Auteur ; Emanuel LAUBER, Auteur ; K.J. VORCKEL, Auteur ; M. WOHR, Auteur ; Beat SCHWALLER, Auteur Article en page(s) : 15p. Langues : Anglais (eng) Mots-clés : 17-beta estradiol Asd Estradiol treatment Excitation/inhibition balance Parvalbumin Social behavior Ultrasonic vocalizations Index. décimale : PER Périodiques Résumé : Background: Autism spectrum disorder (ASD) is a group of neurodevelopmental disorders characterized by two core symptoms: impaired social interaction and communication, and restricted, repetitive behaviors and interests. The pathophysiology of ASD is not yet fully understood, due to a plethora of genetic and environmental risk factors that might be associated with or causal for ASD. Recent findings suggest that one putative convergent pathway for some forms of ASD might be the downregulation of the calcium-binding protein parvalbumin (PV). PV-deficient mice (PV-/-, PV+/-), as well as Shank1-/-, Shank3-/-, and VPA mice, which show behavioral deficits relevant to all human ASD core symptoms, are all characterized by lower PV expression levels. Methods: Based on the hypothesis that PV expression might be increased by 17-beta estradiol (E2), PV+/- mice were treated with E2 from postnatal days 5-15 and ASD-related behavior was tested between postnatal days 25 and 31. Results: PV expression levels were significantly increased after E2 treatment and, concomitantly, sociability deficits in PV+/- mice in the direct reciprocal social interaction and the 3-chamber social approach assay, as well as repetitive behaviors, were attenuated. E2 treatment of PV+/+ mice did not increase PV levels and had detrimental effects on sociability and repetitive behavior. In PV-/- mice, E2 obviously did not affect PV levels; tested behaviors were not different from the ones in vehicle-treated PV-/- mice. Conclusion: Our results suggest that the E2-linked amelioration of ASD-like behaviors is specifically occurring in PV+/- mice, indicating that PV upregulation is required for the E2-mediated rescue of ASD-relevant behavioral impairments. En ligne : http://dx.doi.org/10.1186/s13229-018-0199-3 Permalink : https://www.cra-rhone-alpes.org/cid/opac_css/index.php?lvl=notice_display&id=354
in Molecular Autism > 9 (2018) . - 15p.[article] 17-beta estradiol increases parvalbumin levels in Pvalb heterozygous mice and attenuates behavioral phenotypes with relevance to autism core symptoms [texte imprimé] / Federica FILICE, Auteur ; Emanuel LAUBER, Auteur ; K.J. VORCKEL, Auteur ; M. WOHR, Auteur ; Beat SCHWALLER, Auteur . - 15p.
Langues : Anglais (eng)
in Molecular Autism > 9 (2018) . - 15p.
Mots-clés : 17-beta estradiol Asd Estradiol treatment Excitation/inhibition balance Parvalbumin Social behavior Ultrasonic vocalizations Index. décimale : PER Périodiques Résumé : Background: Autism spectrum disorder (ASD) is a group of neurodevelopmental disorders characterized by two core symptoms: impaired social interaction and communication, and restricted, repetitive behaviors and interests. The pathophysiology of ASD is not yet fully understood, due to a plethora of genetic and environmental risk factors that might be associated with or causal for ASD. Recent findings suggest that one putative convergent pathway for some forms of ASD might be the downregulation of the calcium-binding protein parvalbumin (PV). PV-deficient mice (PV-/-, PV+/-), as well as Shank1-/-, Shank3-/-, and VPA mice, which show behavioral deficits relevant to all human ASD core symptoms, are all characterized by lower PV expression levels. Methods: Based on the hypothesis that PV expression might be increased by 17-beta estradiol (E2), PV+/- mice were treated with E2 from postnatal days 5-15 and ASD-related behavior was tested between postnatal days 25 and 31. Results: PV expression levels were significantly increased after E2 treatment and, concomitantly, sociability deficits in PV+/- mice in the direct reciprocal social interaction and the 3-chamber social approach assay, as well as repetitive behaviors, were attenuated. E2 treatment of PV+/+ mice did not increase PV levels and had detrimental effects on sociability and repetitive behavior. In PV-/- mice, E2 obviously did not affect PV levels; tested behaviors were not different from the ones in vehicle-treated PV-/- mice. Conclusion: Our results suggest that the E2-linked amelioration of ASD-like behaviors is specifically occurring in PV+/- mice, indicating that PV upregulation is required for the E2-mediated rescue of ASD-relevant behavioral impairments. En ligne : http://dx.doi.org/10.1186/s13229-018-0199-3 Permalink : https://www.cra-rhone-alpes.org/cid/opac_css/index.php?lvl=notice_display&id=354 Profiling parvalbumin interneurons using iPSC: challenges and perspectives for Autism Spectrum Disorder (ASD) / Federica FILICE in Molecular Autism, 11 (2020)
![]()
[article]
Titre : Profiling parvalbumin interneurons using iPSC: challenges and perspectives for Autism Spectrum Disorder (ASD) Type de document : texte imprimé Auteurs : Federica FILICE, Auteur ; Beat SCHWALLER, Auteur ; Tanja M. MICHEL, Auteur ; Edna GRÜNBLATT, Auteur Article en page(s) : 10 p. Langues : Anglais (eng) Mots-clés : Autism spectrum disorder CRISPR-Cas9 technology GABAergic Induced pluripotent stem cells Interneuron Parvalbumin Schizophrenia Index. décimale : PER Périodiques Résumé : Autism spectrum disorders (ASD) are persistent conditions resulting from disrupted/altered neurodevelopment. ASD multifactorial etiology-and its numerous comorbid conditions-heightens the difficulty in identifying its underlying causes, thus obstructing the development of effective therapies. Increasing evidence from both animal and human studies suggests an altered functioning of the parvalbumin (PV)-expressing inhibitory interneurons as a common and possibly unifying pathway for some forms of ASD. PV-expressing interneurons (short: PVALB neurons) are critically implicated in the regulation of cortical networks' activity. Their particular connectivity patterns, i.e., their preferential targeting of perisomatic regions and axon initial segments of pyramidal cells, as well as their reciprocal connections, enable PVALB neurons to exert a fine-tuned control of, e.g., spike timing, resulting in the generation and modulation of rhythms in the gamma range, which are important for sensory perception and attention.New methodologies such as induced pluripotent stem cells (iPSC) and genome-editing techniques (CRISPR/Cas9) have proven to be valuable tools to get mechanistic insight in neurodevelopmental and/or neurodegenerative and neuropsychiatric diseases. Such technological advances have enabled the generation of PVALB neurons from iPSC. Tagging of these neurons would allow following their fate during the development, from precursor cells to differentiated (and functional) PVALB neurons. Also, it would enable a better understanding of PVALB neuron function, using either iPSC from healthy donors or ASD patients with known mutations in ASD risk genes. In this concept paper, the strategies hopefully leading to a better understanding of PVALB neuron function(s) are briefly discussed. We envision that such an iPSC-based approach combined with emerging (genetic) technologies may offer the opportunity to investigate in detail the role of PVALB neurons and PV during "neurodevelopment ex vivo." En ligne : http://dx.doi.org/10.1186/s13229-020-0314-0 Permalink : https://www.cra-rhone-alpes.org/cid/opac_css/index.php?lvl=notice_display&id=427
in Molecular Autism > 11 (2020) . - 10 p.[article] Profiling parvalbumin interneurons using iPSC: challenges and perspectives for Autism Spectrum Disorder (ASD) [texte imprimé] / Federica FILICE, Auteur ; Beat SCHWALLER, Auteur ; Tanja M. MICHEL, Auteur ; Edna GRÜNBLATT, Auteur . - 10 p.
Langues : Anglais (eng)
in Molecular Autism > 11 (2020) . - 10 p.
Mots-clés : Autism spectrum disorder CRISPR-Cas9 technology GABAergic Induced pluripotent stem cells Interneuron Parvalbumin Schizophrenia Index. décimale : PER Périodiques Résumé : Autism spectrum disorders (ASD) are persistent conditions resulting from disrupted/altered neurodevelopment. ASD multifactorial etiology-and its numerous comorbid conditions-heightens the difficulty in identifying its underlying causes, thus obstructing the development of effective therapies. Increasing evidence from both animal and human studies suggests an altered functioning of the parvalbumin (PV)-expressing inhibitory interneurons as a common and possibly unifying pathway for some forms of ASD. PV-expressing interneurons (short: PVALB neurons) are critically implicated in the regulation of cortical networks' activity. Their particular connectivity patterns, i.e., their preferential targeting of perisomatic regions and axon initial segments of pyramidal cells, as well as their reciprocal connections, enable PVALB neurons to exert a fine-tuned control of, e.g., spike timing, resulting in the generation and modulation of rhythms in the gamma range, which are important for sensory perception and attention.New methodologies such as induced pluripotent stem cells (iPSC) and genome-editing techniques (CRISPR/Cas9) have proven to be valuable tools to get mechanistic insight in neurodevelopmental and/or neurodegenerative and neuropsychiatric diseases. Such technological advances have enabled the generation of PVALB neurons from iPSC. Tagging of these neurons would allow following their fate during the development, from precursor cells to differentiated (and functional) PVALB neurons. Also, it would enable a better understanding of PVALB neuron function, using either iPSC from healthy donors or ASD patients with known mutations in ASD risk genes. In this concept paper, the strategies hopefully leading to a better understanding of PVALB neuron function(s) are briefly discussed. We envision that such an iPSC-based approach combined with emerging (genetic) technologies may offer the opportunity to investigate in detail the role of PVALB neurons and PV during "neurodevelopment ex vivo." En ligne : http://dx.doi.org/10.1186/s13229-020-0314-0 Permalink : https://www.cra-rhone-alpes.org/cid/opac_css/index.php?lvl=notice_display&id=427

