
- <Centre d'Information et de documentation du CRA Rhône-Alpes
- CRA
- Informations pratiques
-
Adresse
Centre d'information et de documentation
Horaires
du CRA Rhône-Alpes
Centre Hospitalier le Vinatier
bât 211
95, Bd Pinel
69678 Bron CedexLundi au Vendredi
Contact
9h00-12h00 13h30-16h00Tél: +33(0)4 37 91 54 65
Mail
Fax: +33(0)4 37 91 54 37
-
Adresse
Résultat de la recherche
7 recherche sur le mot-clé 'Parvalbumin'




Brinp1(-/-) mice exhibit autism-like behaviour, altered memory, hyperactivity and increased parvalbumin-positive cortical interneuron density / S. R. BERKOWICZ in Molecular Autism, 7 (2016)
![]()
[article]
Titre : Brinp1(-/-) mice exhibit autism-like behaviour, altered memory, hyperactivity and increased parvalbumin-positive cortical interneuron density Type de document : Texte imprimé et/ou numérique Auteurs : S. R. BERKOWICZ, Auteur ; T. J. FEATHERBY, Auteur ; Z. QU, Auteur ; A. GIOUSOH, Auteur ; N. A. BORG, Auteur ; J. I. HENG, Auteur ; J. C. WHISSTOCK, Auteur ; P. I. BIRD, Auteur Article en page(s) : 22p. Langues : Anglais (eng) Mots-clés : Animals Attention Deficit Disorder with Hyperactivity/metabolism/pathology Autism Spectrum Disorder/metabolism/pathology Behavior, Animal Brain/metabolism/pathology Disease Models, Animal Female Genotype Glycoproteins/genetics/metabolism Interneurons/metabolism Male Memory, Short-Term Mice Mice, Inbred C57BL Mice, Knockout Motor Activity Nerve Tissue Proteins/deficiency/genetics/metabolism Parvalbumins/genetics/metabolism Phenotype Real-Time Polymerase Chain Reaction Vocalization, Animal Autism spectrum disorder Brinp1 Cortex Hyperactivity Interneuron Knock-out Neurodevelopment Parvalbumin Index. décimale : PER Périodiques Résumé : BACKGROUND: BMP/RA-inducible neural-specific protein 1 (Brinp1) is highly conserved in vertebrates, and continuously expressed in the neocortex, hippocampus, olfactory bulb and cerebellum from mid-embryonic development through to adulthood. METHODS: Brinp1 knock-out (Brinp1(-/-)) mice were generated by Cre-recombinase-mediated removal of the third exon of Brinp1. Knock-out mice were characterised by behavioural phenotyping, immunohistochemistry and expression analysis of the developing and adult brain. RESULTS: Absence of Brinp1 during development results in a behavioural phenotype resembling autism spectrum disorder (ASD), in which knock-out mice show reduced sociability and changes in vocalisation capacity. In addition, Brinp1(-/-) mice exhibit hyper-locomotor activity, have impaired short-term memory, and exhibit poor reproductive success. Brinp1(-/-) mice show increased density of parvalbumin-expressing interneurons in the adult mouse brain. Brinp1(-/-) mice do not show signs of altered neural precursor proliferation or increased apoptosis during late embryonic brain development. The expression of the related neuronal migration genes Astn1 and Astn2 is increased in the brains of Brinp1(-/-) mice, suggesting that they may ameliorate the effects of Brinp1 loss. CONCLUSIONS: Brinp1 plays an important role in normal brain development and function by influencing neuronal distribution within the cortex. The increased cortical PV-positive interneuron density and altered behaviour of Brinp1(-/-) mice resemble features of a subset of human neurological disorders; namely autism spectrum disorder (ASD) and the hyperactivity aspect of attention deficit hyperactivity disorder (ADHD). En ligne : http://dx.doi.org/10.1186/s13229-016-0079-7 Permalink : https://www.cra-rhone-alpes.org/cid/opac_css/index.php?lvl=notice_display&id=328
in Molecular Autism > 7 (2016) . - 22p.[article] Brinp1(-/-) mice exhibit autism-like behaviour, altered memory, hyperactivity and increased parvalbumin-positive cortical interneuron density [Texte imprimé et/ou numérique] / S. R. BERKOWICZ, Auteur ; T. J. FEATHERBY, Auteur ; Z. QU, Auteur ; A. GIOUSOH, Auteur ; N. A. BORG, Auteur ; J. I. HENG, Auteur ; J. C. WHISSTOCK, Auteur ; P. I. BIRD, Auteur . - 22p.
Langues : Anglais (eng)
in Molecular Autism > 7 (2016) . - 22p.
Mots-clés : Animals Attention Deficit Disorder with Hyperactivity/metabolism/pathology Autism Spectrum Disorder/metabolism/pathology Behavior, Animal Brain/metabolism/pathology Disease Models, Animal Female Genotype Glycoproteins/genetics/metabolism Interneurons/metabolism Male Memory, Short-Term Mice Mice, Inbred C57BL Mice, Knockout Motor Activity Nerve Tissue Proteins/deficiency/genetics/metabolism Parvalbumins/genetics/metabolism Phenotype Real-Time Polymerase Chain Reaction Vocalization, Animal Autism spectrum disorder Brinp1 Cortex Hyperactivity Interneuron Knock-out Neurodevelopment Parvalbumin Index. décimale : PER Périodiques Résumé : BACKGROUND: BMP/RA-inducible neural-specific protein 1 (Brinp1) is highly conserved in vertebrates, and continuously expressed in the neocortex, hippocampus, olfactory bulb and cerebellum from mid-embryonic development through to adulthood. METHODS: Brinp1 knock-out (Brinp1(-/-)) mice were generated by Cre-recombinase-mediated removal of the third exon of Brinp1. Knock-out mice were characterised by behavioural phenotyping, immunohistochemistry and expression analysis of the developing and adult brain. RESULTS: Absence of Brinp1 during development results in a behavioural phenotype resembling autism spectrum disorder (ASD), in which knock-out mice show reduced sociability and changes in vocalisation capacity. In addition, Brinp1(-/-) mice exhibit hyper-locomotor activity, have impaired short-term memory, and exhibit poor reproductive success. Brinp1(-/-) mice show increased density of parvalbumin-expressing interneurons in the adult mouse brain. Brinp1(-/-) mice do not show signs of altered neural precursor proliferation or increased apoptosis during late embryonic brain development. The expression of the related neuronal migration genes Astn1 and Astn2 is increased in the brains of Brinp1(-/-) mice, suggesting that they may ameliorate the effects of Brinp1 loss. CONCLUSIONS: Brinp1 plays an important role in normal brain development and function by influencing neuronal distribution within the cortex. The increased cortical PV-positive interneuron density and altered behaviour of Brinp1(-/-) mice resemble features of a subset of human neurological disorders; namely autism spectrum disorder (ASD) and the hyperactivity aspect of attention deficit hyperactivity disorder (ADHD). En ligne : http://dx.doi.org/10.1186/s13229-016-0079-7 Permalink : https://www.cra-rhone-alpes.org/cid/opac_css/index.php?lvl=notice_display&id=328 17-beta estradiol increases parvalbumin levels in Pvalb heterozygous mice and attenuates behavioral phenotypes with relevance to autism core symptoms / F. FILICE in Molecular Autism, 9 (2018)
![]()
[article]
Titre : 17-beta estradiol increases parvalbumin levels in Pvalb heterozygous mice and attenuates behavioral phenotypes with relevance to autism core symptoms Type de document : Texte imprimé et/ou numérique Auteurs : F. FILICE, Auteur ; E. LAUBER, Auteur ; K. J. VORCKEL, Auteur ; M. WOHR, Auteur ; B. SCHWALLER, Auteur Article en page(s) : 15p. Langues : Anglais (eng) Mots-clés : 17-beta estradiol Asd Estradiol treatment Excitation/inhibition balance Parvalbumin Social behavior Ultrasonic vocalizations Index. décimale : PER Périodiques Résumé : Background: Autism spectrum disorder (ASD) is a group of neurodevelopmental disorders characterized by two core symptoms: impaired social interaction and communication, and restricted, repetitive behaviors and interests. The pathophysiology of ASD is not yet fully understood, due to a plethora of genetic and environmental risk factors that might be associated with or causal for ASD. Recent findings suggest that one putative convergent pathway for some forms of ASD might be the downregulation of the calcium-binding protein parvalbumin (PV). PV-deficient mice (PV-/-, PV+/-), as well as Shank1-/-, Shank3-/-, and VPA mice, which show behavioral deficits relevant to all human ASD core symptoms, are all characterized by lower PV expression levels. Methods: Based on the hypothesis that PV expression might be increased by 17-beta estradiol (E2), PV+/- mice were treated with E2 from postnatal days 5-15 and ASD-related behavior was tested between postnatal days 25 and 31. Results: PV expression levels were significantly increased after E2 treatment and, concomitantly, sociability deficits in PV+/- mice in the direct reciprocal social interaction and the 3-chamber social approach assay, as well as repetitive behaviors, were attenuated. E2 treatment of PV+/+ mice did not increase PV levels and had detrimental effects on sociability and repetitive behavior. In PV-/- mice, E2 obviously did not affect PV levels; tested behaviors were not different from the ones in vehicle-treated PV-/- mice. Conclusion: Our results suggest that the E2-linked amelioration of ASD-like behaviors is specifically occurring in PV+/- mice, indicating that PV upregulation is required for the E2-mediated rescue of ASD-relevant behavioral impairments. En ligne : http://dx.doi.org/10.1186/s13229-018-0199-3 Permalink : https://www.cra-rhone-alpes.org/cid/opac_css/index.php?lvl=notice_display&id=354
in Molecular Autism > 9 (2018) . - 15p.[article] 17-beta estradiol increases parvalbumin levels in Pvalb heterozygous mice and attenuates behavioral phenotypes with relevance to autism core symptoms [Texte imprimé et/ou numérique] / F. FILICE, Auteur ; E. LAUBER, Auteur ; K. J. VORCKEL, Auteur ; M. WOHR, Auteur ; B. SCHWALLER, Auteur . - 15p.
Langues : Anglais (eng)
in Molecular Autism > 9 (2018) . - 15p.
Mots-clés : 17-beta estradiol Asd Estradiol treatment Excitation/inhibition balance Parvalbumin Social behavior Ultrasonic vocalizations Index. décimale : PER Périodiques Résumé : Background: Autism spectrum disorder (ASD) is a group of neurodevelopmental disorders characterized by two core symptoms: impaired social interaction and communication, and restricted, repetitive behaviors and interests. The pathophysiology of ASD is not yet fully understood, due to a plethora of genetic and environmental risk factors that might be associated with or causal for ASD. Recent findings suggest that one putative convergent pathway for some forms of ASD might be the downregulation of the calcium-binding protein parvalbumin (PV). PV-deficient mice (PV-/-, PV+/-), as well as Shank1-/-, Shank3-/-, and VPA mice, which show behavioral deficits relevant to all human ASD core symptoms, are all characterized by lower PV expression levels. Methods: Based on the hypothesis that PV expression might be increased by 17-beta estradiol (E2), PV+/- mice were treated with E2 from postnatal days 5-15 and ASD-related behavior was tested between postnatal days 25 and 31. Results: PV expression levels were significantly increased after E2 treatment and, concomitantly, sociability deficits in PV+/- mice in the direct reciprocal social interaction and the 3-chamber social approach assay, as well as repetitive behaviors, were attenuated. E2 treatment of PV+/+ mice did not increase PV levels and had detrimental effects on sociability and repetitive behavior. In PV-/- mice, E2 obviously did not affect PV levels; tested behaviors were not different from the ones in vehicle-treated PV-/- mice. Conclusion: Our results suggest that the E2-linked amelioration of ASD-like behaviors is specifically occurring in PV+/- mice, indicating that PV upregulation is required for the E2-mediated rescue of ASD-relevant behavioral impairments. En ligne : http://dx.doi.org/10.1186/s13229-018-0199-3 Permalink : https://www.cra-rhone-alpes.org/cid/opac_css/index.php?lvl=notice_display&id=354 Absence of parvalbumin increases mitochondria volume and branching of dendrites in inhibitory Pvalb neurons in vivo: a point of convergence of autism spectrum disorder (ASD) risk gene phenotypes / Lucia JANICKOVA in Molecular Autism, 11 (2020)
![]()
[article]
Titre : Absence of parvalbumin increases mitochondria volume and branching of dendrites in inhibitory Pvalb neurons in vivo: a point of convergence of autism spectrum disorder (ASD) risk gene phenotypes Type de document : Texte imprimé et/ou numérique Auteurs : Lucia JANICKOVA, Auteur ; Karin Farah RECHBERGER, Auteur ; Lucas WEY, Auteur ; Beat SCHWALLER, Auteur Article en page(s) : 47 p. Langues : Anglais (eng) Mots-clés : Autism spectrum disorder Calcium homeostasis Calcium-binding protein Mitochondria Parvalbumin Pvalb neurons Index. décimale : PER Périodiques Résumé : BACKGROUND: In fast firing, parvalbumin (PV)-expressing (Pvalb) interneurons, PV acts as an intracellular Ca(2+) signal modulator with slow-onset kinetics. In Purkinje cells of PV(-/-) mice, adaptive/homeostatic mechanisms lead to an increase in mitochondria, organelles equally capable of delayed Ca(2+) sequestering/buffering. An inverse regulation of PV and mitochondria likewise operates in cell model systems in vitro including myotubes, epithelial cells, and oligodendrocyte-like cells overexpressing PV. Whether such opposite regulation pertains to all Pvalb neurons is currently unknown. In oligodendrocyte-like cells, PV additionally decreases growth and branching of processes in a cell-autonomous manner. METHODS: The in vivo effects of absence of PV were investigated in inhibitory Pvalb neurons expressing EGFP, present in the somatosensory and medial prefrontal cortex, striatum, thalamic reticular nucleus, hippocampal regions DG, CA3, and CA1 and cerebellum of mice either wild-type or knockout (PV(-/-)) for the Pvalb gene. Changes in Pvalb neuron morphology and PV concentrations were determined using immunofluorescence, followed by 3D-reconstruction and quantitative image analyses. RESULTS: PV deficiency led to an increase in mitochondria volume and density in the soma; the magnitude of the effect was positively correlated with the estimated PV concentrations in the various Pvalb neuron subpopulations in wild-type neurons. The increase in dendrite length and branching, as well as thickness of proximal dendrites of selected PV(-/-) Pvalb neurons is likely the result of the observed increased density and length of mitochondria in these PV(-/-) Pvalb neuron dendrites. The increased branching and soma size directly linked to the absence of PV is assumed to contribute to the increased volume of the neocortex present in juvenile PV(-/-) mice. The extended dendritic branching is in line with the hypothesis of local hyperconnectivity in autism spectrum disorder (ASD) and ASD mouse models including PV(-/-) mice, which display all ASD core symptoms and several comorbidities including cortical macrocephaly at juvenile age. CONCLUSION: PV is involved in most proposed mechanisms implicated in ASD etiology: alterations in Ca(2+) signaling affecting E/I balance, changes in mitochondria structure/function, and increased dendritic length and branching, possibly resulting in local hyperconnectivity, all in a likely cell autonomous way. En ligne : http://dx.doi.org/10.1186/s13229-020-00323-8 Permalink : https://www.cra-rhone-alpes.org/cid/opac_css/index.php?lvl=notice_display&id=427
in Molecular Autism > 11 (2020) . - 47 p.[article] Absence of parvalbumin increases mitochondria volume and branching of dendrites in inhibitory Pvalb neurons in vivo: a point of convergence of autism spectrum disorder (ASD) risk gene phenotypes [Texte imprimé et/ou numérique] / Lucia JANICKOVA, Auteur ; Karin Farah RECHBERGER, Auteur ; Lucas WEY, Auteur ; Beat SCHWALLER, Auteur . - 47 p.
Langues : Anglais (eng)
in Molecular Autism > 11 (2020) . - 47 p.
Mots-clés : Autism spectrum disorder Calcium homeostasis Calcium-binding protein Mitochondria Parvalbumin Pvalb neurons Index. décimale : PER Périodiques Résumé : BACKGROUND: In fast firing, parvalbumin (PV)-expressing (Pvalb) interneurons, PV acts as an intracellular Ca(2+) signal modulator with slow-onset kinetics. In Purkinje cells of PV(-/-) mice, adaptive/homeostatic mechanisms lead to an increase in mitochondria, organelles equally capable of delayed Ca(2+) sequestering/buffering. An inverse regulation of PV and mitochondria likewise operates in cell model systems in vitro including myotubes, epithelial cells, and oligodendrocyte-like cells overexpressing PV. Whether such opposite regulation pertains to all Pvalb neurons is currently unknown. In oligodendrocyte-like cells, PV additionally decreases growth and branching of processes in a cell-autonomous manner. METHODS: The in vivo effects of absence of PV were investigated in inhibitory Pvalb neurons expressing EGFP, present in the somatosensory and medial prefrontal cortex, striatum, thalamic reticular nucleus, hippocampal regions DG, CA3, and CA1 and cerebellum of mice either wild-type or knockout (PV(-/-)) for the Pvalb gene. Changes in Pvalb neuron morphology and PV concentrations were determined using immunofluorescence, followed by 3D-reconstruction and quantitative image analyses. RESULTS: PV deficiency led to an increase in mitochondria volume and density in the soma; the magnitude of the effect was positively correlated with the estimated PV concentrations in the various Pvalb neuron subpopulations in wild-type neurons. The increase in dendrite length and branching, as well as thickness of proximal dendrites of selected PV(-/-) Pvalb neurons is likely the result of the observed increased density and length of mitochondria in these PV(-/-) Pvalb neuron dendrites. The increased branching and soma size directly linked to the absence of PV is assumed to contribute to the increased volume of the neocortex present in juvenile PV(-/-) mice. The extended dendritic branching is in line with the hypothesis of local hyperconnectivity in autism spectrum disorder (ASD) and ASD mouse models including PV(-/-) mice, which display all ASD core symptoms and several comorbidities including cortical macrocephaly at juvenile age. CONCLUSION: PV is involved in most proposed mechanisms implicated in ASD etiology: alterations in Ca(2+) signaling affecting E/I balance, changes in mitochondria structure/function, and increased dendritic length and branching, possibly resulting in local hyperconnectivity, all in a likely cell autonomous way. En ligne : http://dx.doi.org/10.1186/s13229-020-00323-8 Permalink : https://www.cra-rhone-alpes.org/cid/opac_css/index.php?lvl=notice_display&id=427 Decreased parvalbumin mRNA levels in cerebellar Purkinje cells in autism / Jean-Jacques SOGHOMONIAN in Autism Research, 10-11 (November 2017)
![]()
[article]
Titre : Decreased parvalbumin mRNA levels in cerebellar Purkinje cells in autism Type de document : Texte imprimé et/ou numérique Auteurs : Jean-Jacques SOGHOMONIAN, Auteur ; Kunzhong ZHANG, Auteur ; Sujithra REPRAKASH, Auteur ; Gene J. BLATT, Auteur Article en page(s) : p.1787-1796 Langues : Anglais (eng) Mots-clés : post-mortem parvalbumin cerebellum GABA gene expression Index. décimale : PER Périodiques Résumé : Recent neuropathology studies in human brains indicate that several areas of the prefrontal cortex have decreased numbers of parvalbumin interneurons or decreased parvalbumin expression in Autism Spectrum disorders (ASD) [Hashemi, Ariza, Rogers, Noctor, & Martinez-Cerdeno, 2017; Zikopoulos & Barbas, ]. These data suggest that a deficit in parvalbumin may be a key neuropathology of ASD and contribute to altered GABAergic inhibition. However, it is unclear if a deficit in parvalbumin is a phenomenon that occurs in regions other than the cerebral cortex. The cerebellum is a major region where neuropathology was first detected in ASD over three decades ago [Bauman & Kemper, ]. In view of the documented association between parvalbumin-expressing neurons and autism, the objective of the present study was to determine if parvalbumin gene expression is also altered in Purkinje neurons of the cerebellum. Radioisotopic in situ hybridization histochemistry was used on human tissue sections from control and ASD brains in order to detect and measure parvalbumin mRNA levels at the single cell level in Purkinje cells of Crus II of the lateral cerebellar hemispheres. Results indicate that parvalbumin mRNA levels are significantly lower in Purkinje cells in ASD compared to control brains. This decrease was not influenced by post-mortem interval or age at death. This result indicates that decreased parvalbumin expression is a more widespread feature of ASD. We discuss how this decrease may be implicated in altered cerebellar output to the cerebral cortex and in key ASD symptoms. Autism Res 2017, 10: 1787–1796. © 2017 International Society for Autism Research, Wiley Periodicals, Inc. Lay Summary The cerebellum of the brain controls movement and cognition, including memory and language. This study investigated mechanisms of cerebellar function in Autism. Our hypothesis is that parvalbumin, a molecule that controls and coordinate many cellular brain functions, contributes to the excitatory/inhibitory imbalance in Autism. We report that parvalbumin expression is depressed in Purkinje cells of the cerebellum in autism. This finding contributes to elucidate the cellular and molecular underpinings of autism and should provide a direction for future therapies. En ligne : http://dx.doi.org/10.1002/aur.1835 Permalink : https://www.cra-rhone-alpes.org/cid/opac_css/index.php?lvl=notice_display&id=322
in Autism Research > 10-11 (November 2017) . - p.1787-1796[article] Decreased parvalbumin mRNA levels in cerebellar Purkinje cells in autism [Texte imprimé et/ou numérique] / Jean-Jacques SOGHOMONIAN, Auteur ; Kunzhong ZHANG, Auteur ; Sujithra REPRAKASH, Auteur ; Gene J. BLATT, Auteur . - p.1787-1796.
Langues : Anglais (eng)
in Autism Research > 10-11 (November 2017) . - p.1787-1796
Mots-clés : post-mortem parvalbumin cerebellum GABA gene expression Index. décimale : PER Périodiques Résumé : Recent neuropathology studies in human brains indicate that several areas of the prefrontal cortex have decreased numbers of parvalbumin interneurons or decreased parvalbumin expression in Autism Spectrum disorders (ASD) [Hashemi, Ariza, Rogers, Noctor, & Martinez-Cerdeno, 2017; Zikopoulos & Barbas, ]. These data suggest that a deficit in parvalbumin may be a key neuropathology of ASD and contribute to altered GABAergic inhibition. However, it is unclear if a deficit in parvalbumin is a phenomenon that occurs in regions other than the cerebral cortex. The cerebellum is a major region where neuropathology was first detected in ASD over three decades ago [Bauman & Kemper, ]. In view of the documented association between parvalbumin-expressing neurons and autism, the objective of the present study was to determine if parvalbumin gene expression is also altered in Purkinje neurons of the cerebellum. Radioisotopic in situ hybridization histochemistry was used on human tissue sections from control and ASD brains in order to detect and measure parvalbumin mRNA levels at the single cell level in Purkinje cells of Crus II of the lateral cerebellar hemispheres. Results indicate that parvalbumin mRNA levels are significantly lower in Purkinje cells in ASD compared to control brains. This decrease was not influenced by post-mortem interval or age at death. This result indicates that decreased parvalbumin expression is a more widespread feature of ASD. We discuss how this decrease may be implicated in altered cerebellar output to the cerebral cortex and in key ASD symptoms. Autism Res 2017, 10: 1787–1796. © 2017 International Society for Autism Research, Wiley Periodicals, Inc. Lay Summary The cerebellum of the brain controls movement and cognition, including memory and language. This study investigated mechanisms of cerebellar function in Autism. Our hypothesis is that parvalbumin, a molecule that controls and coordinate many cellular brain functions, contributes to the excitatory/inhibitory imbalance in Autism. We report that parvalbumin expression is depressed in Purkinje cells of the cerebellum in autism. This finding contributes to elucidate the cellular and molecular underpinings of autism and should provide a direction for future therapies. En ligne : http://dx.doi.org/10.1002/aur.1835 Permalink : https://www.cra-rhone-alpes.org/cid/opac_css/index.php?lvl=notice_display&id=322 Profiling parvalbumin interneurons using iPSC: challenges and perspectives for Autism Spectrum Disorder (ASD) / Federica FILICE in Molecular Autism, 11 (2020)
![]()
[article]
Titre : Profiling parvalbumin interneurons using iPSC: challenges and perspectives for Autism Spectrum Disorder (ASD) Type de document : Texte imprimé et/ou numérique Auteurs : Federica FILICE, Auteur ; Beat SCHWALLER, Auteur ; Tanja M. MICHEL, Auteur ; Edna GRÜNBLATT, Auteur Article en page(s) : 10 p. Langues : Anglais (eng) Mots-clés : Autism spectrum disorder CRISPR-Cas9 technology GABAergic Induced pluripotent stem cells Interneuron Parvalbumin Schizophrenia Index. décimale : PER Périodiques Résumé : Autism spectrum disorders (ASD) are persistent conditions resulting from disrupted/altered neurodevelopment. ASD multifactorial etiology-and its numerous comorbid conditions-heightens the difficulty in identifying its underlying causes, thus obstructing the development of effective therapies. Increasing evidence from both animal and human studies suggests an altered functioning of the parvalbumin (PV)-expressing inhibitory interneurons as a common and possibly unifying pathway for some forms of ASD. PV-expressing interneurons (short: PVALB neurons) are critically implicated in the regulation of cortical networks' activity. Their particular connectivity patterns, i.e., their preferential targeting of perisomatic regions and axon initial segments of pyramidal cells, as well as their reciprocal connections, enable PVALB neurons to exert a fine-tuned control of, e.g., spike timing, resulting in the generation and modulation of rhythms in the gamma range, which are important for sensory perception and attention.New methodologies such as induced pluripotent stem cells (iPSC) and genome-editing techniques (CRISPR/Cas9) have proven to be valuable tools to get mechanistic insight in neurodevelopmental and/or neurodegenerative and neuropsychiatric diseases. Such technological advances have enabled the generation of PVALB neurons from iPSC. Tagging of these neurons would allow following their fate during the development, from precursor cells to differentiated (and functional) PVALB neurons. Also, it would enable a better understanding of PVALB neuron function, using either iPSC from healthy donors or ASD patients with known mutations in ASD risk genes. In this concept paper, the strategies hopefully leading to a better understanding of PVALB neuron function(s) are briefly discussed. We envision that such an iPSC-based approach combined with emerging (genetic) technologies may offer the opportunity to investigate in detail the role of PVALB neurons and PV during "neurodevelopment ex vivo." En ligne : http://dx.doi.org/10.1186/s13229-020-0314-0 Permalink : https://www.cra-rhone-alpes.org/cid/opac_css/index.php?lvl=notice_display&id=427
in Molecular Autism > 11 (2020) . - 10 p.[article] Profiling parvalbumin interneurons using iPSC: challenges and perspectives for Autism Spectrum Disorder (ASD) [Texte imprimé et/ou numérique] / Federica FILICE, Auteur ; Beat SCHWALLER, Auteur ; Tanja M. MICHEL, Auteur ; Edna GRÜNBLATT, Auteur . - 10 p.
Langues : Anglais (eng)
in Molecular Autism > 11 (2020) . - 10 p.
Mots-clés : Autism spectrum disorder CRISPR-Cas9 technology GABAergic Induced pluripotent stem cells Interneuron Parvalbumin Schizophrenia Index. décimale : PER Périodiques Résumé : Autism spectrum disorders (ASD) are persistent conditions resulting from disrupted/altered neurodevelopment. ASD multifactorial etiology-and its numerous comorbid conditions-heightens the difficulty in identifying its underlying causes, thus obstructing the development of effective therapies. Increasing evidence from both animal and human studies suggests an altered functioning of the parvalbumin (PV)-expressing inhibitory interneurons as a common and possibly unifying pathway for some forms of ASD. PV-expressing interneurons (short: PVALB neurons) are critically implicated in the regulation of cortical networks' activity. Their particular connectivity patterns, i.e., their preferential targeting of perisomatic regions and axon initial segments of pyramidal cells, as well as their reciprocal connections, enable PVALB neurons to exert a fine-tuned control of, e.g., spike timing, resulting in the generation and modulation of rhythms in the gamma range, which are important for sensory perception and attention.New methodologies such as induced pluripotent stem cells (iPSC) and genome-editing techniques (CRISPR/Cas9) have proven to be valuable tools to get mechanistic insight in neurodevelopmental and/or neurodegenerative and neuropsychiatric diseases. Such technological advances have enabled the generation of PVALB neurons from iPSC. Tagging of these neurons would allow following their fate during the development, from precursor cells to differentiated (and functional) PVALB neurons. Also, it would enable a better understanding of PVALB neuron function, using either iPSC from healthy donors or ASD patients with known mutations in ASD risk genes. In this concept paper, the strategies hopefully leading to a better understanding of PVALB neuron function(s) are briefly discussed. We envision that such an iPSC-based approach combined with emerging (genetic) technologies may offer the opportunity to investigate in detail the role of PVALB neurons and PV during "neurodevelopment ex vivo." En ligne : http://dx.doi.org/10.1186/s13229-020-0314-0 Permalink : https://www.cra-rhone-alpes.org/cid/opac_css/index.php?lvl=notice_display&id=427 Common circuit defect of excitatory-inhibitory balance in mouse models of autism / N. GOGOLLA in Journal of Neurodevelopmental Disorders, 1-2 (June 2009)
![]()
PermalinkImbalance of laminar-specific excitatory and inhibitory circuits of the orbitofrontal cortex in autism / Xuefeng LIU in Molecular Autism, 11 (2020)
![]()
Permalink