[article]
Titre : |
Use of Machine Learning to Identify Children with Autism and Their Motor Abnormalities |
Type de document : |
Texte imprimé et/ou numérique |
Auteurs : |
Alessandro CRIPPA, Auteur ; Christian SALVATORE, Auteur ; Paolo PEREGO, Auteur ; Sara FORTI, Auteur ; Maria NOBILE, Auteur ; Massimo MOLTENI, Auteur ; Isabella CASTIGLIONI, Auteur |
Année de publication : |
2015 |
Article en page(s) : |
p.2146-2156 |
Langues : |
Anglais (eng) |
Mots-clés : |
Autism spectrum disorder Kinematics Classification Machine learning Support vector machines |
Index. décimale : |
PER Périodiques |
Résumé : |
In the present work, we have undertaken a proof-of-concept study to determine whether a simple upper-limb movement could be useful to accurately classify low-functioning children with autism spectrum disorder (ASD) aged 2–4. To answer this question, we developed a supervised machine-learning method to correctly discriminate 15 preschool children with ASD from 15 typically developing children by means of kinematic analysis of a simple reach-to-drop task. Our method reached a maximum classification accuracy of 96.7 % with seven features related to the goal-oriented part of the movement. These preliminary findings offer insight into a possible motor signature of ASD that may be potentially useful in identifying a well-defined subset of patients, reducing the clinical heterogeneity within the broad behavioral phenotype. |
En ligne : |
http://dx.doi.org/10.1007/s10803-015-2379-8 |
Permalink : |
https://www.cra-rhone-alpes.org/cid/opac_css/index.php?lvl=notice_display&id=261 |
in Journal of Autism and Developmental Disorders > 45-7 (July 2015) . - p.2146-2156
[article] Use of Machine Learning to Identify Children with Autism and Their Motor Abnormalities [Texte imprimé et/ou numérique] / Alessandro CRIPPA, Auteur ; Christian SALVATORE, Auteur ; Paolo PEREGO, Auteur ; Sara FORTI, Auteur ; Maria NOBILE, Auteur ; Massimo MOLTENI, Auteur ; Isabella CASTIGLIONI, Auteur . - 2015 . - p.2146-2156. Langues : Anglais ( eng) in Journal of Autism and Developmental Disorders > 45-7 (July 2015) . - p.2146-2156
Mots-clés : |
Autism spectrum disorder Kinematics Classification Machine learning Support vector machines |
Index. décimale : |
PER Périodiques |
Résumé : |
In the present work, we have undertaken a proof-of-concept study to determine whether a simple upper-limb movement could be useful to accurately classify low-functioning children with autism spectrum disorder (ASD) aged 2–4. To answer this question, we developed a supervised machine-learning method to correctly discriminate 15 preschool children with ASD from 15 typically developing children by means of kinematic analysis of a simple reach-to-drop task. Our method reached a maximum classification accuracy of 96.7 % with seven features related to the goal-oriented part of the movement. These preliminary findings offer insight into a possible motor signature of ASD that may be potentially useful in identifying a well-defined subset of patients, reducing the clinical heterogeneity within the broad behavioral phenotype. |
En ligne : |
http://dx.doi.org/10.1007/s10803-015-2379-8 |
Permalink : |
https://www.cra-rhone-alpes.org/cid/opac_css/index.php?lvl=notice_display&id=261 |
|