
- <Centre d'Information et de documentation du CRA Rhône-Alpes
- CRA
- Informations pratiques
-
Adresse
Centre d'information et de documentation
Horaires
du CRA Rhône-Alpes
Centre Hospitalier le Vinatier
bât 211
95, Bd Pinel
69678 Bron CedexLundi au Vendredi
Contact
9h00-12h00 13h30-16h00Tél: +33(0)4 37 91 54 65
Mail
Fax: +33(0)4 37 91 54 37
-
Adresse
Détail de l'auteur
Auteur Emily J. KNIGHT |
Documents disponibles écrits par cet auteur (2)



Attentional influences on neural processing of biological motion in typically developing children and those on the autism spectrum / Emily J. KNIGHT in Molecular Autism, 13 (2022)
![]()
[article]
Titre : Attentional influences on neural processing of biological motion in typically developing children and those on the autism spectrum Type de document : Texte imprimé et/ou numérique Auteurs : Emily J. KNIGHT, Auteur ; Aaron I. KRAKOWSKI, Auteur ; Edward G. FREEDMAN, Auteur ; John S. BUTLER, Auteur ; Sophie MOLHOLM, Auteur ; John J. FOXE, Auteur Article en page(s) : 33 p. Langues : Anglais (eng) Mots-clés : Adolescent Autism Spectrum Disorder Autistic Disorder Child Cross-Sectional Studies Electroencephalography Humans Social Skills Asd Biological motion Erp Event-related potentials Social cognition Vep Visual evoked potential Index. décimale : PER Périodiques Résumé : BACKGROUND: Biological motion imparts rich information related to the movement, actions, intentions and affective state of others, which can provide foundational support for various aspects of social cognition and behavior. Given that atypical social communication and cognition are hallmark symptoms of autism spectrum disorder (ASD), many have theorized that a potential source of this deficit may lie in dysfunctional neural mechanisms of biological motion processing. Synthesis of existing literature provides some support for biological motion processing deficits in autism spectrum disorder, although high study heterogeneity and inconsistent findings complicate interpretation. Here, we attempted to reconcile some of this residual controversy by investigating a possible modulating role for attention in biological motion processing in ASD. METHODS: We employed high-density electroencephalographic recordings while participants observed point-light displays of upright, inverted and scrambled biological motion under two task conditions to explore spatiotemporal dynamics of intentional and unintentional biological motion processing in children and adolescents with ASD (n=27), comparing them to a control cohort of neurotypical (NT) participants (n=35). RESULTS: Behaviorally, ASD participants were able to discriminate biological motion with similar accuracy to NT controls. However, electrophysiologic investigation revealed reduced automatic selective processing of upright biologic versus scrambled motion stimuli in ASD relative to NT individuals, which was ameliorated when task demands required explicit attention to biological motion. Additionally, we observed distinctive patterns of covariance between visual potentials evoked by biological motion and functional social ability, such that Vineland Adaptive Behavior Scale-Socialization domain scores were differentially associated with biological motion processing in the N1 period in the ASD but not the NT group. LIMITATIONS: The cross-sectional design of this study does not allow us to definitively answer the question of whether developmental differences in attention to biological motion cause disruption in social communication, and the sample was limited to children with average or above cognitive ability. CONCLUSIONS: Together, these data suggest that individuals with ASD are able to discriminate, with explicit attention, biological from non-biological motion but demonstrate diminished automatic neural specificity for biological motion processing, which may have cascading implications for the development of higher-order social cognition. En ligne : http://dx.doi.org/10.1186/s13229-022-00512-7 Permalink : https://www.cra-rhone-alpes.org/cid/opac_css/index.php?lvl=notice_display&id=491
in Molecular Autism > 13 (2022) . - 33 p.[article] Attentional influences on neural processing of biological motion in typically developing children and those on the autism spectrum [Texte imprimé et/ou numérique] / Emily J. KNIGHT, Auteur ; Aaron I. KRAKOWSKI, Auteur ; Edward G. FREEDMAN, Auteur ; John S. BUTLER, Auteur ; Sophie MOLHOLM, Auteur ; John J. FOXE, Auteur . - 33 p.
Langues : Anglais (eng)
in Molecular Autism > 13 (2022) . - 33 p.
Mots-clés : Adolescent Autism Spectrum Disorder Autistic Disorder Child Cross-Sectional Studies Electroencephalography Humans Social Skills Asd Biological motion Erp Event-related potentials Social cognition Vep Visual evoked potential Index. décimale : PER Périodiques Résumé : BACKGROUND: Biological motion imparts rich information related to the movement, actions, intentions and affective state of others, which can provide foundational support for various aspects of social cognition and behavior. Given that atypical social communication and cognition are hallmark symptoms of autism spectrum disorder (ASD), many have theorized that a potential source of this deficit may lie in dysfunctional neural mechanisms of biological motion processing. Synthesis of existing literature provides some support for biological motion processing deficits in autism spectrum disorder, although high study heterogeneity and inconsistent findings complicate interpretation. Here, we attempted to reconcile some of this residual controversy by investigating a possible modulating role for attention in biological motion processing in ASD. METHODS: We employed high-density electroencephalographic recordings while participants observed point-light displays of upright, inverted and scrambled biological motion under two task conditions to explore spatiotemporal dynamics of intentional and unintentional biological motion processing in children and adolescents with ASD (n=27), comparing them to a control cohort of neurotypical (NT) participants (n=35). RESULTS: Behaviorally, ASD participants were able to discriminate biological motion with similar accuracy to NT controls. However, electrophysiologic investigation revealed reduced automatic selective processing of upright biologic versus scrambled motion stimuli in ASD relative to NT individuals, which was ameliorated when task demands required explicit attention to biological motion. Additionally, we observed distinctive patterns of covariance between visual potentials evoked by biological motion and functional social ability, such that Vineland Adaptive Behavior Scale-Socialization domain scores were differentially associated with biological motion processing in the N1 period in the ASD but not the NT group. LIMITATIONS: The cross-sectional design of this study does not allow us to definitively answer the question of whether developmental differences in attention to biological motion cause disruption in social communication, and the sample was limited to children with average or above cognitive ability. CONCLUSIONS: Together, these data suggest that individuals with ASD are able to discriminate, with explicit attention, biological from non-biological motion but demonstrate diminished automatic neural specificity for biological motion processing, which may have cascading implications for the development of higher-order social cognition. En ligne : http://dx.doi.org/10.1186/s13229-022-00512-7 Permalink : https://www.cra-rhone-alpes.org/cid/opac_css/index.php?lvl=notice_display&id=491 Individuals With Autism Have No Detectable Deficit in Neural Markers of Prediction Error When Presented With Auditory Rhythms of Varied Temporal Complexity / Emily J. KNIGHT in Autism Research, 13-12 (December 2020)
![]()
[article]
Titre : Individuals With Autism Have No Detectable Deficit in Neural Markers of Prediction Error When Presented With Auditory Rhythms of Varied Temporal Complexity Type de document : Texte imprimé et/ou numérique Auteurs : Emily J. KNIGHT, Auteur ; Leona OAKES, Auteur ; Susan L. HYMAN, Auteur ; Edward G. FREEDMAN, Auteur ; John J. FOXE, Auteur Article en page(s) : p.2058-2072 Langues : Anglais (eng) Mots-clés : auditory perceptual disorders autism spectrum disorder communication disorders electroencephalography evoked potentials, auditory mismatch negativity Index. décimale : PER Périodiques Résumé : The brain's ability to encode temporal patterns and predict upcoming events is critical for speech perception and other aspects of social communication. Deficits in predictive coding may contribute to difficulties with social communication and overreliance on repetitive predictable environments in individuals with autism spectrum disorder (ASD). Using a mismatch negativity (MMN) task involving rhythmic tone sequences of varying complexity, we tested the hypotheses that (1) individuals with ASD have reduced MMN response to auditory stimuli that deviate in presentation timing from expected patterns, particularly as pattern complexity increases and (2) amplitude of MMN signal is inversely correlated with level of impairment in social communication and repetitive behaviors. Electroencephalography was acquired as individuals (age 6-21?years) listened to repeated five-rhythm tones that varied in the Shannon entropy of the rhythm across three conditions (zero, medium-1 bit, and high-2 bit entropy). The majority of the tones conformed to the established rhythm (standard tones); occasionally the fourth tone was temporally shifted relative to its expected time of occurrence (deviant tones). Social communication and repetitive behaviors were measured using the Social Responsiveness Scale and Repetitive Behavior Scale-Revised. Both neurotypical controls (n = 19) and individuals with ASD (n = 21) show stepwise decreases in MMN as a function of increasing entropy. Contrary to the result forecasted by a predictive coding hypothesis, individuals with ASD do not differ from controls in these neural mechanisms of prediction error to auditory rhythms of varied temporal complexity, and there is no relationship between these signals and social communication or repetitive behavior measures. LAY SUMMARY: We tested the idea that the brain's ability to use previous experience to influence processing of sounds is weaker in individuals with autism spectrum disorder (ASD) than in neurotypical individuals. We found no difference between individuals with ASD and neurotypical controls in brain wave responses to sounds that occurred earlier than expected in either simple or complex rhythms. There was also no relationship between these brain waves and social communication or repetitive behavior scores. En ligne : http://dx.doi.org/10.1002/aur.2362 Permalink : https://www.cra-rhone-alpes.org/cid/opac_css/index.php?lvl=notice_display&id=434
in Autism Research > 13-12 (December 2020) . - p.2058-2072[article] Individuals With Autism Have No Detectable Deficit in Neural Markers of Prediction Error When Presented With Auditory Rhythms of Varied Temporal Complexity [Texte imprimé et/ou numérique] / Emily J. KNIGHT, Auteur ; Leona OAKES, Auteur ; Susan L. HYMAN, Auteur ; Edward G. FREEDMAN, Auteur ; John J. FOXE, Auteur . - p.2058-2072.
Langues : Anglais (eng)
in Autism Research > 13-12 (December 2020) . - p.2058-2072
Mots-clés : auditory perceptual disorders autism spectrum disorder communication disorders electroencephalography evoked potentials, auditory mismatch negativity Index. décimale : PER Périodiques Résumé : The brain's ability to encode temporal patterns and predict upcoming events is critical for speech perception and other aspects of social communication. Deficits in predictive coding may contribute to difficulties with social communication and overreliance on repetitive predictable environments in individuals with autism spectrum disorder (ASD). Using a mismatch negativity (MMN) task involving rhythmic tone sequences of varying complexity, we tested the hypotheses that (1) individuals with ASD have reduced MMN response to auditory stimuli that deviate in presentation timing from expected patterns, particularly as pattern complexity increases and (2) amplitude of MMN signal is inversely correlated with level of impairment in social communication and repetitive behaviors. Electroencephalography was acquired as individuals (age 6-21?years) listened to repeated five-rhythm tones that varied in the Shannon entropy of the rhythm across three conditions (zero, medium-1 bit, and high-2 bit entropy). The majority of the tones conformed to the established rhythm (standard tones); occasionally the fourth tone was temporally shifted relative to its expected time of occurrence (deviant tones). Social communication and repetitive behaviors were measured using the Social Responsiveness Scale and Repetitive Behavior Scale-Revised. Both neurotypical controls (n = 19) and individuals with ASD (n = 21) show stepwise decreases in MMN as a function of increasing entropy. Contrary to the result forecasted by a predictive coding hypothesis, individuals with ASD do not differ from controls in these neural mechanisms of prediction error to auditory rhythms of varied temporal complexity, and there is no relationship between these signals and social communication or repetitive behavior measures. LAY SUMMARY: We tested the idea that the brain's ability to use previous experience to influence processing of sounds is weaker in individuals with autism spectrum disorder (ASD) than in neurotypical individuals. We found no difference between individuals with ASD and neurotypical controls in brain wave responses to sounds that occurred earlier than expected in either simple or complex rhythms. There was also no relationship between these brain waves and social communication or repetitive behavior scores. En ligne : http://dx.doi.org/10.1002/aur.2362 Permalink : https://www.cra-rhone-alpes.org/cid/opac_css/index.php?lvl=notice_display&id=434