
- <Centre d'Information et de documentation du CRA Rhône-Alpes
- CRA
- Informations pratiques
-
Adresse
Centre d'information et de documentation
Horaires
du CRA Rhône-Alpes
Centre Hospitalier le Vinatier
bât 211
95, Bd Pinel
69678 Bron CedexLundi au Vendredi
Contact
9h00-12h00 13h30-16h00Tél: +33(0)4 37 91 54 65
Mail
Fax: +33(0)4 37 91 54 37
-
Adresse
Détail de l'auteur
Auteur Irene Alice CHICCHI GIGLIOLI |
Documents disponibles écrits par cet auteur (1)



Assessment of the Autism Spectrum Disorder Based on Machine Learning and Social Visual Attention: A Systematic Review / Maria Eleonora MINISSI in Journal of Autism and Developmental Disorders, 52-5 (May 2022)
![]()
[article]
Titre : Assessment of the Autism Spectrum Disorder Based on Machine Learning and Social Visual Attention: A Systematic Review Type de document : Texte imprimé et/ou numérique Auteurs : Maria Eleonora MINISSI, Auteur ; Irene Alice CHICCHI GIGLIOLI, Auteur ; Fabrizia MANTOVANI, Auteur ; Mariano ALCAÑIZ RAYA, Auteur Article en page(s) : p.2187-2202 Langues : Anglais (eng) Mots-clés : Autism Spectrum Disorder/diagnosis Biomarkers Child Eye Movements Humans Machine Learning Assessment Autism spectrum disorder Classification Eye tracking Social visual attention Index. décimale : PER Périodiques Résumé : The assessment of autism spectrum disorder (ASD) is based on semi-structured procedures addressed to children and caregivers. Such methods rely on the evaluation of behavioural symptoms rather than on the objective evaluation of psychophysiological underpinnings. Advances in research provided evidence of modern procedures for the early assessment of ASD, involving both machine learning (ML) techniques and biomarkers, as eye movements (EM) towards social stimuli. This systematic review provides a comprehensive discussion of 11 papers regarding the early assessment of ASD based on ML techniques and children's social visual attention (SVA). Evidences suggest ML as a relevant technique for the early assessment of ASD, which might represent a valid biomarker-based procedure to objectively make diagnosis. Limitations and future directions are discussed. En ligne : http://dx.doi.org/10.1007/s10803-021-05106-5 Permalink : https://www.cra-rhone-alpes.org/cid/opac_css/index.php?lvl=notice_display&id=476
in Journal of Autism and Developmental Disorders > 52-5 (May 2022) . - p.2187-2202[article] Assessment of the Autism Spectrum Disorder Based on Machine Learning and Social Visual Attention: A Systematic Review [Texte imprimé et/ou numérique] / Maria Eleonora MINISSI, Auteur ; Irene Alice CHICCHI GIGLIOLI, Auteur ; Fabrizia MANTOVANI, Auteur ; Mariano ALCAÑIZ RAYA, Auteur . - p.2187-2202.
Langues : Anglais (eng)
in Journal of Autism and Developmental Disorders > 52-5 (May 2022) . - p.2187-2202
Mots-clés : Autism Spectrum Disorder/diagnosis Biomarkers Child Eye Movements Humans Machine Learning Assessment Autism spectrum disorder Classification Eye tracking Social visual attention Index. décimale : PER Périodiques Résumé : The assessment of autism spectrum disorder (ASD) is based on semi-structured procedures addressed to children and caregivers. Such methods rely on the evaluation of behavioural symptoms rather than on the objective evaluation of psychophysiological underpinnings. Advances in research provided evidence of modern procedures for the early assessment of ASD, involving both machine learning (ML) techniques and biomarkers, as eye movements (EM) towards social stimuli. This systematic review provides a comprehensive discussion of 11 papers regarding the early assessment of ASD based on ML techniques and children's social visual attention (SVA). Evidences suggest ML as a relevant technique for the early assessment of ASD, which might represent a valid biomarker-based procedure to objectively make diagnosis. Limitations and future directions are discussed. En ligne : http://dx.doi.org/10.1007/s10803-021-05106-5 Permalink : https://www.cra-rhone-alpes.org/cid/opac_css/index.php?lvl=notice_display&id=476