Centre d'Information et de documentation du CRA Rhône-Alpes
CRA
Informations pratiques
-
Adresse
Centre d'information et de documentation
du CRA Rhône-Alpes
Centre Hospitalier le Vinatier
bât 211
95, Bd Pinel
69678 Bron CedexHoraires
Lundi au Vendredi
9h00-12h00 13h30-16h00Contact
Tél: +33(0)4 37 91 54 65
Mail
Fax: +33(0)4 37 91 54 37
-
Détail de l'auteur
Auteur J. L. HOLDER
Commentaire :
Jr.
|
Documents disponibles écrits par cet auteur (3)
Faire une suggestion Affiner la recherche
Delineation of the genetic and clinical spectrum of Phelan-McDermid syndrome caused by SHANK3 point mutations / S. DE RUBEIS in Molecular Autism, 9 (2018)
[article]
Titre : Delineation of the genetic and clinical spectrum of Phelan-McDermid syndrome caused by SHANK3 point mutations Type de document : Texte imprimé et/ou numérique Auteurs : S. DE RUBEIS, Auteur ; P. M. SIPER, Auteur ; A. DURKIN, Auteur ; J. WEISSMAN, Auteur ; F. MURATET, Auteur ; Danielle B. HALPERN, Auteur ; M. D. P. TRELLES, Auteur ; Y. FRANK, Auteur ; R. LOZANO, Auteur ; A. Ting WANG, Auteur ; J. L. HOLDER, Auteur ; Catalina BETANCUR, Auteur ; Joseph D. BUXBAUM, Auteur ; A. KOLEVZON, Auteur Article en page(s) : 31p. Langues : Anglais (eng) Mots-clés : Adolescent Adult Child Child, Preschool Chromosome Deletion Chromosome Disorders/genetics/pathology Chromosomes, Human, Pair 22/genetics Female Haploinsufficiency Humans Male Nerve Tissue Proteins/genetics Phenotype Point Mutation 22q13 deletion syndrome Autism spectrum disorder Intellectual disability Phelan-McDermid syndrome shank3 Sequence variants Index. décimale : PER Périodiques Résumé : Background: Phelan-McDermid syndrome (PMS) is a neurodevelopmental disorder characterized by psychiatric and neurological features. Most reported cases are caused by 22q13.3 deletions, leading to SHANK3 haploinsufficiency, but also usually encompassing many other genes. While the number of point mutations identified in SHANK3 has increased in recent years due to large-scale sequencing studies, systematic studies describing the phenotype of individuals harboring such mutations are lacking. Methods: We provide detailed clinical and genetic data on 17 individuals carrying mutations in SHANK3. We also review 60 previously reported patients with pathogenic or likely pathogenic SHANK3 variants, often lacking detailed phenotypic information. Results: SHANK3 mutations in our cohort and in previously reported cases were distributed throughout the protein; the majority were truncating and all were compatible with de novo inheritance. Despite substantial allelic heterogeneity, four variants were recurrent (p.Leu1142Valfs*153, p.Ala1227Glyfs*69, p.Arg1255Leufs*25, and c.2265+1G>A), suggesting that these are hotspots for de novo mutations. All individuals studied had intellectual disability, and autism spectrum disorder was prevalent (73%). Severe speech deficits were common, but in contrast to individuals with 22q13.3 deletions, the majority developed single words, including 41% with at least phrase speech. Other common findings were consistent with reports among individuals with 22q13.3 deletions, including hypotonia, motor skill deficits, regression, seizures, brain abnormalities, mild dysmorphic features, and feeding and gastrointestinal problems. Conclusions: Haploinsufficiency of SHANK3 resulting from point mutations is sufficient to cause a broad range of features associated with PMS. Our findings expand the molecular and phenotypic spectrum of PMS caused by SHANK3 point mutations and suggest that, in general, speech impairment and motor deficits are more severe in the case of deletions. In contrast, renal abnormalities associated with 22q13.3 deletions do not appear to be related to the loss of SHANK3. En ligne : https://dx.doi.org/10.1186/s13229-018-0205-9 Permalink : https://www.cra-rhone-alpes.org/cid/opac_css/index.php?lvl=notice_display&id=371
in Molecular Autism > 9 (2018) . - 31p.[article] Delineation of the genetic and clinical spectrum of Phelan-McDermid syndrome caused by SHANK3 point mutations [Texte imprimé et/ou numérique] / S. DE RUBEIS, Auteur ; P. M. SIPER, Auteur ; A. DURKIN, Auteur ; J. WEISSMAN, Auteur ; F. MURATET, Auteur ; Danielle B. HALPERN, Auteur ; M. D. P. TRELLES, Auteur ; Y. FRANK, Auteur ; R. LOZANO, Auteur ; A. Ting WANG, Auteur ; J. L. HOLDER, Auteur ; Catalina BETANCUR, Auteur ; Joseph D. BUXBAUM, Auteur ; A. KOLEVZON, Auteur . - 31p.
Langues : Anglais (eng)
in Molecular Autism > 9 (2018) . - 31p.
Mots-clés : Adolescent Adult Child Child, Preschool Chromosome Deletion Chromosome Disorders/genetics/pathology Chromosomes, Human, Pair 22/genetics Female Haploinsufficiency Humans Male Nerve Tissue Proteins/genetics Phenotype Point Mutation 22q13 deletion syndrome Autism spectrum disorder Intellectual disability Phelan-McDermid syndrome shank3 Sequence variants Index. décimale : PER Périodiques Résumé : Background: Phelan-McDermid syndrome (PMS) is a neurodevelopmental disorder characterized by psychiatric and neurological features. Most reported cases are caused by 22q13.3 deletions, leading to SHANK3 haploinsufficiency, but also usually encompassing many other genes. While the number of point mutations identified in SHANK3 has increased in recent years due to large-scale sequencing studies, systematic studies describing the phenotype of individuals harboring such mutations are lacking. Methods: We provide detailed clinical and genetic data on 17 individuals carrying mutations in SHANK3. We also review 60 previously reported patients with pathogenic or likely pathogenic SHANK3 variants, often lacking detailed phenotypic information. Results: SHANK3 mutations in our cohort and in previously reported cases were distributed throughout the protein; the majority were truncating and all were compatible with de novo inheritance. Despite substantial allelic heterogeneity, four variants were recurrent (p.Leu1142Valfs*153, p.Ala1227Glyfs*69, p.Arg1255Leufs*25, and c.2265+1G>A), suggesting that these are hotspots for de novo mutations. All individuals studied had intellectual disability, and autism spectrum disorder was prevalent (73%). Severe speech deficits were common, but in contrast to individuals with 22q13.3 deletions, the majority developed single words, including 41% with at least phrase speech. Other common findings were consistent with reports among individuals with 22q13.3 deletions, including hypotonia, motor skill deficits, regression, seizures, brain abnormalities, mild dysmorphic features, and feeding and gastrointestinal problems. Conclusions: Haploinsufficiency of SHANK3 resulting from point mutations is sufficient to cause a broad range of features associated with PMS. Our findings expand the molecular and phenotypic spectrum of PMS caused by SHANK3 point mutations and suggest that, in general, speech impairment and motor deficits are more severe in the case of deletions. In contrast, renal abnormalities associated with 22q13.3 deletions do not appear to be related to the loss of SHANK3. En ligne : https://dx.doi.org/10.1186/s13229-018-0205-9 Permalink : https://www.cra-rhone-alpes.org/cid/opac_css/index.php?lvl=notice_display&id=371 Health-Related Quality of Life in Pediatric Patients with Syndromic Autism and their Caregivers / C. BOLBOCEAN in Journal of Autism and Developmental Disorders, 52-3 (March 2022)
[article]
Titre : Health-Related Quality of Life in Pediatric Patients with Syndromic Autism and their Caregivers Type de document : Texte imprimé et/ou numérique Auteurs : C. BOLBOCEAN, Auteur ; F. N. ANDÚJAR, Auteur ; M. MCCORMACK, Auteur ; B. SUTER, Auteur ; J. L. HOLDER, Auteur Article en page(s) : p.1334-1345 Langues : Anglais (eng) Mots-clés : Autism Spectrum Disorder/genetics Autistic Disorder Caregivers Child Chromosome Disorders/genetics Humans Intellectual Disability/diagnosis Quality of Life Autism spectrum disorder Beach center family quality of life Clinical research Diabetes Health related quality of life Idiopathic autism Intellectual disability Pediatric quality of life inventory Phelan-McDermid syndrome Rett syndrome SYNGAP1 related intellectual disability Index. décimale : PER Périodiques Résumé : Children with autism have a significantly lower quality of life compared with their neurotypical peers. While multiple studies have quantified the impact of autism on health-related quality of life (HRQoL) through standardized surveys such as the PedsQL, none have specifically investigated the impact of syndromic autism. Here we evaluate HRQoL in children diagnosed with three genetic disorders that strongly predispose to syndromic autism: Phelan-McDermid syndrome (PMD), Rett syndrome (RTT), and SYNGAP1-related intellectual disability (SYNGAP1-ID). We find the most severely impacted dimension is physical functioning. Strikingly, syndromic autism results in worse quality of life than other chronic disorders including idiopathic autism. This study demonstrates the utility of caregiver surveys in prioritizing phenotypes, which may be targeted as clinical endpoints for genetically defined ASDs. En ligne : http://dx.doi.org/10.1007/s10803-021-05030-8 Permalink : https://www.cra-rhone-alpes.org/cid/opac_css/index.php?lvl=notice_display&id=455
in Journal of Autism and Developmental Disorders > 52-3 (March 2022) . - p.1334-1345[article] Health-Related Quality of Life in Pediatric Patients with Syndromic Autism and their Caregivers [Texte imprimé et/ou numérique] / C. BOLBOCEAN, Auteur ; F. N. ANDÚJAR, Auteur ; M. MCCORMACK, Auteur ; B. SUTER, Auteur ; J. L. HOLDER, Auteur . - p.1334-1345.
Langues : Anglais (eng)
in Journal of Autism and Developmental Disorders > 52-3 (March 2022) . - p.1334-1345
Mots-clés : Autism Spectrum Disorder/genetics Autistic Disorder Caregivers Child Chromosome Disorders/genetics Humans Intellectual Disability/diagnosis Quality of Life Autism spectrum disorder Beach center family quality of life Clinical research Diabetes Health related quality of life Idiopathic autism Intellectual disability Pediatric quality of life inventory Phelan-McDermid syndrome Rett syndrome SYNGAP1 related intellectual disability Index. décimale : PER Périodiques Résumé : Children with autism have a significantly lower quality of life compared with their neurotypical peers. While multiple studies have quantified the impact of autism on health-related quality of life (HRQoL) through standardized surveys such as the PedsQL, none have specifically investigated the impact of syndromic autism. Here we evaluate HRQoL in children diagnosed with three genetic disorders that strongly predispose to syndromic autism: Phelan-McDermid syndrome (PMD), Rett syndrome (RTT), and SYNGAP1-related intellectual disability (SYNGAP1-ID). We find the most severely impacted dimension is physical functioning. Strikingly, syndromic autism results in worse quality of life than other chronic disorders including idiopathic autism. This study demonstrates the utility of caregiver surveys in prioritizing phenotypes, which may be targeted as clinical endpoints for genetically defined ASDs. En ligne : http://dx.doi.org/10.1007/s10803-021-05030-8 Permalink : https://www.cra-rhone-alpes.org/cid/opac_css/index.php?lvl=notice_display&id=455 Phenotypic characterization of individuals with SYNGAP1 pathogenic variants reveals a potential correlation between posterior dominant rhythm and developmental progression / A. JIMENEZ-GOMEZ in Journal of Neurodevelopmental Disorders, 11-1 (December 2019)
[article]
Titre : Phenotypic characterization of individuals with SYNGAP1 pathogenic variants reveals a potential correlation between posterior dominant rhythm and developmental progression Type de document : Texte imprimé et/ou numérique Auteurs : A. JIMENEZ-GOMEZ, Auteur ; S. NIU, Auteur ; F. ANDUJAR-PEREZ, Auteur ; E. A. MCQUADE, Auteur ; A. BALASA, Auteur ; D. HUSS, Auteur ; R. COORG, Auteur ; M. QUACH, Auteur ; S. VINSON, Auteur ; S. RISEN, Auteur ; J. L. HOLDER, Auteur Article en page(s) : 18 p. Langues : Anglais (eng) Mots-clés : Autism Electroencephalogram Neurodevelopment Posterior dominant rhythm Syngap1 Index. décimale : PER Périodiques Résumé : BACKGROUND: The SYNGAP1 gene encodes for a small GTPase-regulating protein critical to dendritic spine maturation and synaptic plasticity. Mutations have recently been identified to cause a breadth of neurodevelopmental disorders including autism, intellectual disability, and epilepsy. The purpose of this work is to define the phenotypic spectrum of SYNGAP1 gene mutations and identify potential biomarkers of clinical severity and developmental progression. METHODS: A retrospective clinical data analysis of individuals with SYNGAP1 mutations was conducted. Data included genetic diagnosis, clinical history and examinations, neurophysiologic data, neuroimaging, and serial neurodevelopmental/behavioral assessments. All patients were seen longitudinally within a 6-year period; data analysis was completed on June 30, 2018. Records for all individuals diagnosed with deleterious SYNGAP1 variants (by clinical sequencing or exome sequencing panels) were reviewed. RESULTS: Fifteen individuals (53% male) with seventeen unique SYNGAP1 mutations are reported. Mean age at genetic diagnosis was 65.9 months (28-174 months). All individuals had epilepsy, with atypical absence seizures being the most common semiology (60%). EEG abnormalities included intermittent rhythmic delta activity (60%), slow or absent posterior dominant rhythm (87%), and epileptiform activity (93%), with generalized discharges being more common than focal. Neuroimaging revealed nonspecific abnormalities (53%). Neurodevelopmental evaluation revealed impairment in all individuals, with gross motor function being the least affected. Autism spectrum disorder was diagnosed in 73% and aggression in 60% of cases. Analysis of biomarkers revealed a trend toward a moderate positive correlation between visual-perceptual/fine motor/adaptive skills and language development, with posterior dominant rhythm on electroencephalogram (EEG), independent of age. No other neurophysiology-development associations or correlations were identified. CONCLUSIONS: A broad spectrum of neurologic and neurodevelopmental features are found with pathogenic variants of SYNGAP1. An abnormal posterior dominant rhythm on EEG correlated with abnormal developmental progression, providing a possible prognostic biomarker. En ligne : https://dx.doi.org/10.1186/s11689-019-9276-y Permalink : https://www.cra-rhone-alpes.org/cid/opac_css/index.php?lvl=notice_display&id=409
in Journal of Neurodevelopmental Disorders > 11-1 (December 2019) . - 18 p.[article] Phenotypic characterization of individuals with SYNGAP1 pathogenic variants reveals a potential correlation between posterior dominant rhythm and developmental progression [Texte imprimé et/ou numérique] / A. JIMENEZ-GOMEZ, Auteur ; S. NIU, Auteur ; F. ANDUJAR-PEREZ, Auteur ; E. A. MCQUADE, Auteur ; A. BALASA, Auteur ; D. HUSS, Auteur ; R. COORG, Auteur ; M. QUACH, Auteur ; S. VINSON, Auteur ; S. RISEN, Auteur ; J. L. HOLDER, Auteur . - 18 p.
Langues : Anglais (eng)
in Journal of Neurodevelopmental Disorders > 11-1 (December 2019) . - 18 p.
Mots-clés : Autism Electroencephalogram Neurodevelopment Posterior dominant rhythm Syngap1 Index. décimale : PER Périodiques Résumé : BACKGROUND: The SYNGAP1 gene encodes for a small GTPase-regulating protein critical to dendritic spine maturation and synaptic plasticity. Mutations have recently been identified to cause a breadth of neurodevelopmental disorders including autism, intellectual disability, and epilepsy. The purpose of this work is to define the phenotypic spectrum of SYNGAP1 gene mutations and identify potential biomarkers of clinical severity and developmental progression. METHODS: A retrospective clinical data analysis of individuals with SYNGAP1 mutations was conducted. Data included genetic diagnosis, clinical history and examinations, neurophysiologic data, neuroimaging, and serial neurodevelopmental/behavioral assessments. All patients were seen longitudinally within a 6-year period; data analysis was completed on June 30, 2018. Records for all individuals diagnosed with deleterious SYNGAP1 variants (by clinical sequencing or exome sequencing panels) were reviewed. RESULTS: Fifteen individuals (53% male) with seventeen unique SYNGAP1 mutations are reported. Mean age at genetic diagnosis was 65.9 months (28-174 months). All individuals had epilepsy, with atypical absence seizures being the most common semiology (60%). EEG abnormalities included intermittent rhythmic delta activity (60%), slow or absent posterior dominant rhythm (87%), and epileptiform activity (93%), with generalized discharges being more common than focal. Neuroimaging revealed nonspecific abnormalities (53%). Neurodevelopmental evaluation revealed impairment in all individuals, with gross motor function being the least affected. Autism spectrum disorder was diagnosed in 73% and aggression in 60% of cases. Analysis of biomarkers revealed a trend toward a moderate positive correlation between visual-perceptual/fine motor/adaptive skills and language development, with posterior dominant rhythm on electroencephalogram (EEG), independent of age. No other neurophysiology-development associations or correlations were identified. CONCLUSIONS: A broad spectrum of neurologic and neurodevelopmental features are found with pathogenic variants of SYNGAP1. An abnormal posterior dominant rhythm on EEG correlated with abnormal developmental progression, providing a possible prognostic biomarker. En ligne : https://dx.doi.org/10.1186/s11689-019-9276-y Permalink : https://www.cra-rhone-alpes.org/cid/opac_css/index.php?lvl=notice_display&id=409