- <Centre d'Information et de documentation du CRA Rhône-Alpes
- CRA
- Informations pratiques
-
Adresse
Centre d'information et de documentation
Horaires
du CRA Rhône-Alpes
Centre Hospitalier le Vinatier
bât 211
95, Bd Pinel
69678 Bron CedexLundi au Vendredi
Contact
9h00-12h00 13h30-16h00Tél: +33(0)4 37 91 54 65
Mail
Fax: +33(0)4 37 91 54 37
-
Adresse
Détail de l'auteur
Auteur Thomas BOUGERON |
Documents disponibles écrits par cet auteur (1)
Faire une suggestion Affiner la recherche
Resting state EEG power spectrum and functional connectivity in autism: a cross-sectional analysis / Pilar GARCES in Molecular Autism, 13 (2022)
[article]
Titre : Resting state EEG power spectrum and functional connectivity in autism: a cross-sectional analysis Type de document : Texte imprimé et/ou numérique Auteurs : Pilar GARCES, Auteur ; Sarah BAUMEISTER, Auteur ; Luke MASON, Auteur ; Christopher H. CHATHAM, Auteur ; Stefan HOLIGA, Auteur ; Juergen DUKART, Auteur ; Emily J. H. JONES, Auteur ; Tobias BANASCHEWSKI, Auteur ; Simon BARON-COHEN, Auteur ; Sven BÖLTE, Auteur ; Jan K. BUITELAAR, Auteur ; Sarah DURSTON, Auteur ; Bob ORANJE, Auteur ; Antonio M. PERSICO, Auteur ; Christian F. BECKMANN, Auteur ; Thomas BOUGERON, Auteur ; Flavio DELL'ACQUA, Auteur ; Christine ECKER, Auteur ; Carolin MOESSNANG, Auteur ; Tony CHARMAN, Auteur ; Julian TILLMANN, Auteur ; Declan G. M. MURPHY, Auteur ; Mark H. JOHNSON, Auteur ; Eva LOTH, Auteur ; Daniel BRANDEIS, Auteur ; Joerg F. HIPP, Auteur Article en page(s) : 22 p. Langues : Anglais (eng) Mots-clés : Adolescent Adult Autism Spectrum Disorder/diagnosis Autistic Disorder Brain/diagnostic imaging Brain Mapping/methods Child Cross-Sectional Studies Electroencephalography/methods Humans Magnetic Resonance Imaging/methods Reproducibility of Results Autism spectrum disorder Eeg Functional connectivity Power spectrum Resting state Index. décimale : PER Périodiques Résumé : BACKGROUND: Understanding the development of the neuronal circuitry underlying autism spectrum disorder (ASD) is critical to shed light into its etiology and for the development of treatment options. Resting state EEG provides a window into spontaneous local and long-range neuronal synchronization and has been investigated in many ASD studies, but results are inconsistent. Unbiased investigation in large and comprehensive samples focusing on replicability is needed. METHODS: We quantified resting state EEG alpha peak metrics, power spectrum (PS, 2-32 Hz) and functional connectivity (FC) in 411 children, adolescents and adults (n=212 ASD, n=199 neurotypicals [NT], all with IQ?>?75). We performed analyses in source-space using individual head models derived from the participants' MRIs. We tested for differences in mean and variance between the ASD and NT groups for both PS and FC using linear mixed effects models accounting for age, sex, IQ and site effects. Then, we used machine learning to assess whether a multivariate combination of EEG features could better separate ASD and NT participants. All analyses were embedded within a train-validation approach (70%-30% split). RESULTS: In the training dataset, we found an interaction between age and group for the reactivity to eye opening (p=.042 uncorrected), and a significant but weak multivariate ASD vs. NT classification performance for PS and FC (sensitivity 0.52-0.62, specificity 0.59-0.73). None of these findings replicated significantly in the validation dataset, although the effect size in the validation dataset overlapped with the prediction interval from the training dataset. LIMITATIONS: The statistical power to detect weak effects-of the magnitude of those found in the training dataset-in the validation dataset is small, and we cannot fully conclude on the reproducibility of the training dataset's effects. CONCLUSIONS: This suggests that PS and FC values in ASD and NT have a strong overlap, and that differences between both groups (in both mean and variance) have, at best, a small effect size. Larger studies would be needed to investigate and replicate such potential effects. En ligne : http://dx.doi.org/10.1186/s13229-022-00500-x Permalink : https://www.cra-rhone-alpes.org/cid/opac_css/index.php?lvl=notice_display&id=477
in Molecular Autism > 13 (2022) . - 22 p.[article] Resting state EEG power spectrum and functional connectivity in autism: a cross-sectional analysis [Texte imprimé et/ou numérique] / Pilar GARCES, Auteur ; Sarah BAUMEISTER, Auteur ; Luke MASON, Auteur ; Christopher H. CHATHAM, Auteur ; Stefan HOLIGA, Auteur ; Juergen DUKART, Auteur ; Emily J. H. JONES, Auteur ; Tobias BANASCHEWSKI, Auteur ; Simon BARON-COHEN, Auteur ; Sven BÖLTE, Auteur ; Jan K. BUITELAAR, Auteur ; Sarah DURSTON, Auteur ; Bob ORANJE, Auteur ; Antonio M. PERSICO, Auteur ; Christian F. BECKMANN, Auteur ; Thomas BOUGERON, Auteur ; Flavio DELL'ACQUA, Auteur ; Christine ECKER, Auteur ; Carolin MOESSNANG, Auteur ; Tony CHARMAN, Auteur ; Julian TILLMANN, Auteur ; Declan G. M. MURPHY, Auteur ; Mark H. JOHNSON, Auteur ; Eva LOTH, Auteur ; Daniel BRANDEIS, Auteur ; Joerg F. HIPP, Auteur . - 22 p.
Langues : Anglais (eng)
in Molecular Autism > 13 (2022) . - 22 p.
Mots-clés : Adolescent Adult Autism Spectrum Disorder/diagnosis Autistic Disorder Brain/diagnostic imaging Brain Mapping/methods Child Cross-Sectional Studies Electroencephalography/methods Humans Magnetic Resonance Imaging/methods Reproducibility of Results Autism spectrum disorder Eeg Functional connectivity Power spectrum Resting state Index. décimale : PER Périodiques Résumé : BACKGROUND: Understanding the development of the neuronal circuitry underlying autism spectrum disorder (ASD) is critical to shed light into its etiology and for the development of treatment options. Resting state EEG provides a window into spontaneous local and long-range neuronal synchronization and has been investigated in many ASD studies, but results are inconsistent. Unbiased investigation in large and comprehensive samples focusing on replicability is needed. METHODS: We quantified resting state EEG alpha peak metrics, power spectrum (PS, 2-32 Hz) and functional connectivity (FC) in 411 children, adolescents and adults (n=212 ASD, n=199 neurotypicals [NT], all with IQ?>?75). We performed analyses in source-space using individual head models derived from the participants' MRIs. We tested for differences in mean and variance between the ASD and NT groups for both PS and FC using linear mixed effects models accounting for age, sex, IQ and site effects. Then, we used machine learning to assess whether a multivariate combination of EEG features could better separate ASD and NT participants. All analyses were embedded within a train-validation approach (70%-30% split). RESULTS: In the training dataset, we found an interaction between age and group for the reactivity to eye opening (p=.042 uncorrected), and a significant but weak multivariate ASD vs. NT classification performance for PS and FC (sensitivity 0.52-0.62, specificity 0.59-0.73). None of these findings replicated significantly in the validation dataset, although the effect size in the validation dataset overlapped with the prediction interval from the training dataset. LIMITATIONS: The statistical power to detect weak effects-of the magnitude of those found in the training dataset-in the validation dataset is small, and we cannot fully conclude on the reproducibility of the training dataset's effects. CONCLUSIONS: This suggests that PS and FC values in ASD and NT have a strong overlap, and that differences between both groups (in both mean and variance) have, at best, a small effect size. Larger studies would be needed to investigate and replicate such potential effects. En ligne : http://dx.doi.org/10.1186/s13229-022-00500-x Permalink : https://www.cra-rhone-alpes.org/cid/opac_css/index.php?lvl=notice_display&id=477