
- <Centre d'Information et de documentation du CRA Rhône-Alpes
- CRA
- Informations pratiques
-
Adresse
Centre d'information et de documentation
Horaires
du CRA Rhône-Alpes
Centre Hospitalier le Vinatier
bât 211
95, Bd Pinel
69678 Bron CedexLundi au Vendredi
Contact
9h00-12h00 13h30-16h00Tél: +33(0)4 37 91 54 65
Mail
Fax: +33(0)4 37 91 54 37
-
Adresse
Détail de l'auteur
Auteur Emily C. SKALETSKI |
Documents disponibles écrits par cet auteur (3)



Brainstem white matter microstructure is associated with hyporesponsiveness and overall sensory features in autistic children / Olivia SURGENT in Molecular Autism, 13 (2022)
![]()
[article]
Titre : Brainstem white matter microstructure is associated with hyporesponsiveness and overall sensory features in autistic children Type de document : Texte imprimé et/ou numérique Auteurs : Olivia SURGENT, Auteur ; Ali RIAZ, Auteur ; Karla K. AUSDERAU, Auteur ; Nagesh ADLURU, Auteur ; Gregory R. KIRK, Auteur ; Jose GUERRERO-GONZALEZ, Auteur ; Emily C. SKALETSKI, Auteur ; Steven R. KECSKEMETI, Auteur ; Douglas C. DEAN III, Auteur ; Susan ELLIS WEISMER, Auteur ; Andrew L. ALEXANDER, Auteur ; Brittany G. TRAVERS, Auteur Article en page(s) : 48 p. Langues : Anglais (eng) Mots-clés : Humans Child White Matter Brain Quality of Life Autistic Disorder Brain Stem Autism Brainstem Dti Sensory features Voxel-based analysis White matter TherVoyant). While both companies are involved in developing MRI-based surgery techniques, neither are associated with any current areas of his research, including the present publication. All other authors report no biomedical financial interests of potential conflicts of interest. Index. décimale : PER Périodiques Résumé : BACKGROUND: Elevated or reduced responses to sensory stimuli, known as sensory features, are common in autistic individuals and often impact quality of life. Little is known about the neurobiological basis of sensory features in autistic children. However, the brainstem may offer critical insights as it has been associated with both basic sensory processing and core features of autism. METHODS: Diffusion-weighted imaging (DWI) and parent-report of sensory features were acquired from 133 children (61 autistic children with and 72 non-autistic children, 6-11Â years-old). Leveraging novel DWI processing techniques, we investigated the relationship between sensory features and white matter microstructure properties (free-water-elimination-corrected fractional anisotropy [FA] and mean diffusivity [MD]) in precisely delineated brainstem white matter tracts. Follow-up analyses assessed relationships between microstructure and sensory response patterns/modalities and analyzed whole brain white matter using voxel-based analysis. RESULTS: Results revealed distinct relationships between brainstem microstructure and sensory features in autistic children compared to non-autistic children. In autistic children, more prominent sensory features were generally associated with lower MD. Further, in autistic children, sensory hyporesponsiveness and tactile responsivity were strongly associated with white matter microstructure in nearly all brainstem tracts. Follow-up voxel-based analyses confirmed that these relationships were more prominent in the brainstem/cerebellum, with additional sensory-brain findings in the autistic group in the white matter of the primary motor and somatosensory cortices, the occipital lobe, the inferior parietal lobe, and the thalamic projections. LIMITATIONS: All participants communicated via spoken language and acclimated to the sensory environment of an MRI session, which should be considered when assessing the generalizability of this work to the whole of the autism spectrum. CONCLUSIONS: These findings suggest unique brainstem white matter contributions to sensory features in autistic children compared to non-autistic children. The brainstem correlates of sensory features underscore the potential reflex-like nature of behavioral responses to sensory stimuli in autism and have implications for how we conceptualize and address sensory features in autistic populations. En ligne : http://dx.doi.org/10.1186/s13229-022-00524-3 Permalink : https://www.cra-rhone-alpes.org/cid/opac_css/index.php?lvl=notice_display&id=491
in Molecular Autism > 13 (2022) . - 48 p.[article] Brainstem white matter microstructure is associated with hyporesponsiveness and overall sensory features in autistic children [Texte imprimé et/ou numérique] / Olivia SURGENT, Auteur ; Ali RIAZ, Auteur ; Karla K. AUSDERAU, Auteur ; Nagesh ADLURU, Auteur ; Gregory R. KIRK, Auteur ; Jose GUERRERO-GONZALEZ, Auteur ; Emily C. SKALETSKI, Auteur ; Steven R. KECSKEMETI, Auteur ; Douglas C. DEAN III, Auteur ; Susan ELLIS WEISMER, Auteur ; Andrew L. ALEXANDER, Auteur ; Brittany G. TRAVERS, Auteur . - 48 p.
Langues : Anglais (eng)
in Molecular Autism > 13 (2022) . - 48 p.
Mots-clés : Humans Child White Matter Brain Quality of Life Autistic Disorder Brain Stem Autism Brainstem Dti Sensory features Voxel-based analysis White matter TherVoyant). While both companies are involved in developing MRI-based surgery techniques, neither are associated with any current areas of his research, including the present publication. All other authors report no biomedical financial interests of potential conflicts of interest. Index. décimale : PER Périodiques Résumé : BACKGROUND: Elevated or reduced responses to sensory stimuli, known as sensory features, are common in autistic individuals and often impact quality of life. Little is known about the neurobiological basis of sensory features in autistic children. However, the brainstem may offer critical insights as it has been associated with both basic sensory processing and core features of autism. METHODS: Diffusion-weighted imaging (DWI) and parent-report of sensory features were acquired from 133 children (61 autistic children with and 72 non-autistic children, 6-11Â years-old). Leveraging novel DWI processing techniques, we investigated the relationship between sensory features and white matter microstructure properties (free-water-elimination-corrected fractional anisotropy [FA] and mean diffusivity [MD]) in precisely delineated brainstem white matter tracts. Follow-up analyses assessed relationships between microstructure and sensory response patterns/modalities and analyzed whole brain white matter using voxel-based analysis. RESULTS: Results revealed distinct relationships between brainstem microstructure and sensory features in autistic children compared to non-autistic children. In autistic children, more prominent sensory features were generally associated with lower MD. Further, in autistic children, sensory hyporesponsiveness and tactile responsivity were strongly associated with white matter microstructure in nearly all brainstem tracts. Follow-up voxel-based analyses confirmed that these relationships were more prominent in the brainstem/cerebellum, with additional sensory-brain findings in the autistic group in the white matter of the primary motor and somatosensory cortices, the occipital lobe, the inferior parietal lobe, and the thalamic projections. LIMITATIONS: All participants communicated via spoken language and acclimated to the sensory environment of an MRI session, which should be considered when assessing the generalizability of this work to the whole of the autism spectrum. CONCLUSIONS: These findings suggest unique brainstem white matter contributions to sensory features in autistic children compared to non-autistic children. The brainstem correlates of sensory features underscore the potential reflex-like nature of behavioral responses to sensory stimuli in autism and have implications for how we conceptualize and address sensory features in autistic populations. En ligne : http://dx.doi.org/10.1186/s13229-022-00524-3 Permalink : https://www.cra-rhone-alpes.org/cid/opac_css/index.php?lvl=notice_display&id=491 Role of autonomic, nociceptive, and limbic brainstem nuclei in core autism features / Brittany G. TRAVERS in Autism Research, 17-2 (February 2024)
![]()
[article]
Titre : Role of autonomic, nociceptive, and limbic brainstem nuclei in core autism features Type de document : Texte imprimé et/ou numérique Auteurs : Brittany G. TRAVERS, Auteur ; Olivia SURGENT, Auteur ; Jose GUERRERO-GONZALEZ, Auteur ; Douglas C. DEAN III, Auteur ; Nagesh ADLURU, Auteur ; Steven R. KECSKEMETI, Auteur ; Gregory R. KIRK, Auteur ; Andrew L. ALEXANDER, Auteur ; Jun ZHU, Auteur ; Emily C. SKALETSKI, Auteur ; Sonali NAIK, Auteur ; Monica DURAN, Auteur Article en page(s) : p.266-279 Langues : Anglais (eng) Index. décimale : PER Périodiques Résumé : Abstract Although multiple theories have speculated about the brainstem reticular formation's involvement in autistic behaviors, the in vivo imaging of brainstem nuclei needed to test these theories has proven technologically challenging. Using methods to improve brainstem imaging in children, this study set out to elucidate the role of the autonomic, nociceptive, and limbic brainstem nuclei in the autism features of 145 children (74 autistic children, 6.0-10.9?years). Participants completed an assessment of core autism features and diffusion- and T1-weighted imaging optimized to improve brainstem images. After data reduction via principal component analysis, correlational analyses examined associations among autism features and the microstructural properties of brainstem clusters. Independent replication was performed in 43 adolescents (24 autistic, 13.0-17.9?years). We found specific nuclei, most robustly the parvicellular reticular formation-alpha (PCRtA) and to a lesser degree the lateral parabrachial nucleus (LPB) and ventral tegmental parabrachial pigmented complex (VTA-PBP), to be associated with autism features. The PCRtA and some of the LPB associations were independently found in the replication sample, but the VTA-PBP associations were not. Consistent with theoretical perspectives, the findings suggest that individual differences in pontine reticular formation nuclei contribute to the prominence of autistic features. Specifically, the PCRtA, a nucleus involved in mastication, digestion, and cardio-respiration in animal models, was associated with social communication in children, while the LPB, a pain-network nucleus, was associated with repetitive behaviors. These findings highlight the contributions of key autonomic brainstem nuclei to the expression of core autism features. En ligne : https://doi.org/10.1002/aur.3096 Permalink : https://www.cra-rhone-alpes.org/cid/opac_css/index.php?lvl=notice_display&id=522
in Autism Research > 17-2 (February 2024) . - p.266-279[article] Role of autonomic, nociceptive, and limbic brainstem nuclei in core autism features [Texte imprimé et/ou numérique] / Brittany G. TRAVERS, Auteur ; Olivia SURGENT, Auteur ; Jose GUERRERO-GONZALEZ, Auteur ; Douglas C. DEAN III, Auteur ; Nagesh ADLURU, Auteur ; Steven R. KECSKEMETI, Auteur ; Gregory R. KIRK, Auteur ; Andrew L. ALEXANDER, Auteur ; Jun ZHU, Auteur ; Emily C. SKALETSKI, Auteur ; Sonali NAIK, Auteur ; Monica DURAN, Auteur . - p.266-279.
Langues : Anglais (eng)
in Autism Research > 17-2 (February 2024) . - p.266-279
Index. décimale : PER Périodiques Résumé : Abstract Although multiple theories have speculated about the brainstem reticular formation's involvement in autistic behaviors, the in vivo imaging of brainstem nuclei needed to test these theories has proven technologically challenging. Using methods to improve brainstem imaging in children, this study set out to elucidate the role of the autonomic, nociceptive, and limbic brainstem nuclei in the autism features of 145 children (74 autistic children, 6.0-10.9?years). Participants completed an assessment of core autism features and diffusion- and T1-weighted imaging optimized to improve brainstem images. After data reduction via principal component analysis, correlational analyses examined associations among autism features and the microstructural properties of brainstem clusters. Independent replication was performed in 43 adolescents (24 autistic, 13.0-17.9?years). We found specific nuclei, most robustly the parvicellular reticular formation-alpha (PCRtA) and to a lesser degree the lateral parabrachial nucleus (LPB) and ventral tegmental parabrachial pigmented complex (VTA-PBP), to be associated with autism features. The PCRtA and some of the LPB associations were independently found in the replication sample, but the VTA-PBP associations were not. Consistent with theoretical perspectives, the findings suggest that individual differences in pontine reticular formation nuclei contribute to the prominence of autistic features. Specifically, the PCRtA, a nucleus involved in mastication, digestion, and cardio-respiration in animal models, was associated with social communication in children, while the LPB, a pain-network nucleus, was associated with repetitive behaviors. These findings highlight the contributions of key autonomic brainstem nuclei to the expression of core autism features. En ligne : https://doi.org/10.1002/aur.3096 Permalink : https://www.cra-rhone-alpes.org/cid/opac_css/index.php?lvl=notice_display&id=522 Sensorimotor Features and Daily Living Skills in Autistic Children With and Without ADHD / Emily C. SKALETSKI in Journal of Autism and Developmental Disorders, 55-3 (March 2025)
![]()
[article]
Titre : Sensorimotor Features and Daily Living Skills in Autistic Children With and Without ADHD Type de document : Texte imprimé et/ou numérique Auteurs : Emily C. SKALETSKI, Auteur ; Kelly BARRY, Auteur ; Elizabeth DENNIS, Auteur ; Ryan DONNELLY, Auteur ; Celina HUERTA, Auteur ; Andrez JONES, Auteur ; Kate SCHMIDT, Auteur ; Sabrina KABAKOV, Auteur ; Karla K. AUSDERAU, Auteur ; James J. LI, Auteur ; Brittany G. TRAVERS, Auteur Article en page(s) : p.1088-1100 Langues : Anglais (eng) Index. décimale : PER Périodiques Résumé : Attention-deficit/hyperactivity disorder (ADHD) commonly co-occurs in autistic children. However, additional research is needed to explore the differences in motor skills and sensory features in autistic children with and without ADHD, as well as the impacts of these factors on daily living skills (DLS). This observational study sought to fill this gap with 67 autistic children (6.14-10.84 years-old), 43 of whom had ADHD. Autistic children with ADHD demonstrated higher sensory features and lower motor skills than autistic children without ADHD. In examining autism and ADHD features dimensionally, we found that overall sensory features, seeking, and hyporesponsiveness were driven by both autism and ADHD features, whereas motor skills, enhanced perception, and hyperresponsiveness were driven by only autism features. Additionally, in using these dimensional variables of autism and ADHD features, we found that differences in motor skills, sensory and autism features, but not ADHD features, impact DLS of autistic children, with autism features and motor skills being the strongest individual predictors of DLS. Together, these results demonstrate the uniqueness of motor skills and sensory features in autistic children with and without ADHD, as well as how autism features, sensory features, and motor skills contribute to DLS, emphasizing the importance of a comprehensive understanding of each individual and complexities of human development when supporting autistic children. En ligne : https://doi.org/10.1007/s10803-024-06256-y Permalink : https://www.cra-rhone-alpes.org/cid/opac_css/index.php?lvl=notice_display&id=549
in Journal of Autism and Developmental Disorders > 55-3 (March 2025) . - p.1088-1100[article] Sensorimotor Features and Daily Living Skills in Autistic Children With and Without ADHD [Texte imprimé et/ou numérique] / Emily C. SKALETSKI, Auteur ; Kelly BARRY, Auteur ; Elizabeth DENNIS, Auteur ; Ryan DONNELLY, Auteur ; Celina HUERTA, Auteur ; Andrez JONES, Auteur ; Kate SCHMIDT, Auteur ; Sabrina KABAKOV, Auteur ; Karla K. AUSDERAU, Auteur ; James J. LI, Auteur ; Brittany G. TRAVERS, Auteur . - p.1088-1100.
Langues : Anglais (eng)
in Journal of Autism and Developmental Disorders > 55-3 (March 2025) . - p.1088-1100
Index. décimale : PER Périodiques Résumé : Attention-deficit/hyperactivity disorder (ADHD) commonly co-occurs in autistic children. However, additional research is needed to explore the differences in motor skills and sensory features in autistic children with and without ADHD, as well as the impacts of these factors on daily living skills (DLS). This observational study sought to fill this gap with 67 autistic children (6.14-10.84 years-old), 43 of whom had ADHD. Autistic children with ADHD demonstrated higher sensory features and lower motor skills than autistic children without ADHD. In examining autism and ADHD features dimensionally, we found that overall sensory features, seeking, and hyporesponsiveness were driven by both autism and ADHD features, whereas motor skills, enhanced perception, and hyperresponsiveness were driven by only autism features. Additionally, in using these dimensional variables of autism and ADHD features, we found that differences in motor skills, sensory and autism features, but not ADHD features, impact DLS of autistic children, with autism features and motor skills being the strongest individual predictors of DLS. Together, these results demonstrate the uniqueness of motor skills and sensory features in autistic children with and without ADHD, as well as how autism features, sensory features, and motor skills contribute to DLS, emphasizing the importance of a comprehensive understanding of each individual and complexities of human development when supporting autistic children. En ligne : https://doi.org/10.1007/s10803-024-06256-y Permalink : https://www.cra-rhone-alpes.org/cid/opac_css/index.php?lvl=notice_display&id=549