Centre d'Information et de documentation du CRA Rhône-Alpes
CRA
Informations pratiques
-
Adresse
Centre d'information et de documentation
du CRA Rhône-Alpes
Centre Hospitalier le Vinatier
bât 211
95, Bd Pinel
69678 Bron CedexHoraires
Lundi au Vendredi
9h00-12h00 13h30-16h00Contact
Tél: +33(0)4 37 91 54 65
Mail
Fax: +33(0)4 37 91 54 37
-
Résultat de la recherche
7 recherche sur le mot-clé 'Brainstem'
Affiner la recherche Générer le flux rss de la recherche
Partager le résultat de cette recherche Faire une suggestion
Brainstem as a developmental gateway to social attention / Ronny GEVA in Journal of Child Psychology and Psychiatry, 58-12 (December 2017)
[article]
Titre : Brainstem as a developmental gateway to social attention Type de document : Texte imprimé et/ou numérique Auteurs : Ronny GEVA, Auteur ; Ayelet DITAL, Auteur ; Dan RAMON, Auteur ; Jessica YARMOLOVSKY, Auteur ; Maor GIDRON, Auteur ; Jacob KUINT, Auteur Article en page(s) : p.1351-1359 Langues : Anglais (eng) Mots-clés : Brainstem development social attention attention Index. décimale : PER Périodiques Résumé : Background Evolution preserves social attention due to its key role in supporting survival. Humans are attracted to social cues from infancy, but the neurobiological mechanisms for the development of social attention are unknown. An evolutionary-based, vertical-hierarchical theoretical model of self-regulation suggests that neonatal brainstem inputs are key for the development of well-regulated social attention. Methods Neonates born preterm (N = 44, GA 34 w.) were recruited and diagnosed at birth as a function of their auditory brainstem evoked responses (ABR). Participants enrolled in a prospective 8-year-long, double-blind, follow-up study comparing participants with brainstem dysfunctions and well-matched controls. Groups had comparable fetal, neonatal, and familial characteristics. Methods incorporated EEG power analysis and gaze tracking during the Attention Network Test (ANT, four cue types, and two targets) and a Triadic Gaze Engagement task (TGE, three social cue levels). Results Results showed that neonatal brainstem compromise is related to long-term changes in Alpha- and Theta-band power asymmetries (p < .034, p < .016, respectively), suggesting suppressed bottom-up input needed to alert social attention. Gaze tracking indicated dysregulated arousal-modulated attention (p < .004) and difficulty in gaze engagement to socially neutral compared to nonsocial cues (p < .012). Conclusions Integrating models of Autism and cross-species data with current long-term follow-up of infants with discrete neonatal brainstem dysfunction suggests neonatal brainstem input as a gateway for bottom-up regulation of social attention. En ligne : http://dx.doi.org/10.1111/jcpp.12746 Permalink : https://www.cra-rhone-alpes.org/cid/opac_css/index.php?lvl=notice_display&id=326
in Journal of Child Psychology and Psychiatry > 58-12 (December 2017) . - p.1351-1359[article] Brainstem as a developmental gateway to social attention [Texte imprimé et/ou numérique] / Ronny GEVA, Auteur ; Ayelet DITAL, Auteur ; Dan RAMON, Auteur ; Jessica YARMOLOVSKY, Auteur ; Maor GIDRON, Auteur ; Jacob KUINT, Auteur . - p.1351-1359.
Langues : Anglais (eng)
in Journal of Child Psychology and Psychiatry > 58-12 (December 2017) . - p.1351-1359
Mots-clés : Brainstem development social attention attention Index. décimale : PER Périodiques Résumé : Background Evolution preserves social attention due to its key role in supporting survival. Humans are attracted to social cues from infancy, but the neurobiological mechanisms for the development of social attention are unknown. An evolutionary-based, vertical-hierarchical theoretical model of self-regulation suggests that neonatal brainstem inputs are key for the development of well-regulated social attention. Methods Neonates born preterm (N = 44, GA 34 w.) were recruited and diagnosed at birth as a function of their auditory brainstem evoked responses (ABR). Participants enrolled in a prospective 8-year-long, double-blind, follow-up study comparing participants with brainstem dysfunctions and well-matched controls. Groups had comparable fetal, neonatal, and familial characteristics. Methods incorporated EEG power analysis and gaze tracking during the Attention Network Test (ANT, four cue types, and two targets) and a Triadic Gaze Engagement task (TGE, three social cue levels). Results Results showed that neonatal brainstem compromise is related to long-term changes in Alpha- and Theta-band power asymmetries (p < .034, p < .016, respectively), suggesting suppressed bottom-up input needed to alert social attention. Gaze tracking indicated dysregulated arousal-modulated attention (p < .004) and difficulty in gaze engagement to socially neutral compared to nonsocial cues (p < .012). Conclusions Integrating models of Autism and cross-species data with current long-term follow-up of infants with discrete neonatal brainstem dysfunction suggests neonatal brainstem input as a gateway for bottom-up regulation of social attention. En ligne : http://dx.doi.org/10.1111/jcpp.12746 Permalink : https://www.cra-rhone-alpes.org/cid/opac_css/index.php?lvl=notice_display&id=326 Brainstem white matter microstructure is associated with hyporesponsiveness and overall sensory features in autistic children / Olivia SURGENT in Molecular Autism, 13 (2022)
[article]
Titre : Brainstem white matter microstructure is associated with hyporesponsiveness and overall sensory features in autistic children Type de document : Texte imprimé et/ou numérique Auteurs : Olivia SURGENT, Auteur ; Ali RIAZ, Auteur ; Karla K. AUSDERAU, Auteur ; Nagesh ADLURU, Auteur ; Gregory R. KIRK, Auteur ; Jose GUERRERO-GONZALEZ, Auteur ; Emily C. SKALETSKI, Auteur ; Steven R. KECSKEMETI, Auteur ; Douglas C. DEAN III, Auteur ; Susan ELLIS WEISMER, Auteur ; Andrew L. ALEXANDER, Auteur ; Brittany G. TRAVERS, Auteur Article en page(s) : 48 p. Langues : Anglais (eng) Mots-clés : Humans Child White Matter Brain Quality of Life Autistic Disorder Brain Stem Autism Brainstem Dti Sensory features Voxel-based analysis White matter TherVoyant). While both companies are involved in developing MRI-based surgery techniques, neither are associated with any current areas of his research, including the present publication. All other authors report no biomedical financial interests of potential conflicts of interest. Index. décimale : PER Périodiques Résumé : BACKGROUND: Elevated or reduced responses to sensory stimuli, known as sensory features, are common in autistic individuals and often impact quality of life. Little is known about the neurobiological basis of sensory features in autistic children. However, the brainstem may offer critical insights as it has been associated with both basic sensory processing and core features of autism. METHODS: Diffusion-weighted imaging (DWI) and parent-report of sensory features were acquired from 133 children (61 autistic children with and 72 non-autistic children, 6-11Â years-old). Leveraging novel DWI processing techniques, we investigated the relationship between sensory features and white matter microstructure properties (free-water-elimination-corrected fractional anisotropy [FA] and mean diffusivity [MD]) in precisely delineated brainstem white matter tracts. Follow-up analyses assessed relationships between microstructure and sensory response patterns/modalities and analyzed whole brain white matter using voxel-based analysis. RESULTS: Results revealed distinct relationships between brainstem microstructure and sensory features in autistic children compared to non-autistic children. In autistic children, more prominent sensory features were generally associated with lower MD. Further, in autistic children, sensory hyporesponsiveness and tactile responsivity were strongly associated with white matter microstructure in nearly all brainstem tracts. Follow-up voxel-based analyses confirmed that these relationships were more prominent in the brainstem/cerebellum, with additional sensory-brain findings in the autistic group in the white matter of the primary motor and somatosensory cortices, the occipital lobe, the inferior parietal lobe, and the thalamic projections. LIMITATIONS: All participants communicated via spoken language and acclimated to the sensory environment of an MRI session, which should be considered when assessing the generalizability of this work to the whole of the autism spectrum. CONCLUSIONS: These findings suggest unique brainstem white matter contributions to sensory features in autistic children compared to non-autistic children. The brainstem correlates of sensory features underscore the potential reflex-like nature of behavioral responses to sensory stimuli in autism and have implications for how we conceptualize and address sensory features in autistic populations. En ligne : http://dx.doi.org/10.1186/s13229-022-00524-3 Permalink : https://www.cra-rhone-alpes.org/cid/opac_css/index.php?lvl=notice_display&id=491
in Molecular Autism > 13 (2022) . - 48 p.[article] Brainstem white matter microstructure is associated with hyporesponsiveness and overall sensory features in autistic children [Texte imprimé et/ou numérique] / Olivia SURGENT, Auteur ; Ali RIAZ, Auteur ; Karla K. AUSDERAU, Auteur ; Nagesh ADLURU, Auteur ; Gregory R. KIRK, Auteur ; Jose GUERRERO-GONZALEZ, Auteur ; Emily C. SKALETSKI, Auteur ; Steven R. KECSKEMETI, Auteur ; Douglas C. DEAN III, Auteur ; Susan ELLIS WEISMER, Auteur ; Andrew L. ALEXANDER, Auteur ; Brittany G. TRAVERS, Auteur . - 48 p.
Langues : Anglais (eng)
in Molecular Autism > 13 (2022) . - 48 p.
Mots-clés : Humans Child White Matter Brain Quality of Life Autistic Disorder Brain Stem Autism Brainstem Dti Sensory features Voxel-based analysis White matter TherVoyant). While both companies are involved in developing MRI-based surgery techniques, neither are associated with any current areas of his research, including the present publication. All other authors report no biomedical financial interests of potential conflicts of interest. Index. décimale : PER Périodiques Résumé : BACKGROUND: Elevated or reduced responses to sensory stimuli, known as sensory features, are common in autistic individuals and often impact quality of life. Little is known about the neurobiological basis of sensory features in autistic children. However, the brainstem may offer critical insights as it has been associated with both basic sensory processing and core features of autism. METHODS: Diffusion-weighted imaging (DWI) and parent-report of sensory features were acquired from 133 children (61 autistic children with and 72 non-autistic children, 6-11Â years-old). Leveraging novel DWI processing techniques, we investigated the relationship between sensory features and white matter microstructure properties (free-water-elimination-corrected fractional anisotropy [FA] and mean diffusivity [MD]) in precisely delineated brainstem white matter tracts. Follow-up analyses assessed relationships between microstructure and sensory response patterns/modalities and analyzed whole brain white matter using voxel-based analysis. RESULTS: Results revealed distinct relationships between brainstem microstructure and sensory features in autistic children compared to non-autistic children. In autistic children, more prominent sensory features were generally associated with lower MD. Further, in autistic children, sensory hyporesponsiveness and tactile responsivity were strongly associated with white matter microstructure in nearly all brainstem tracts. Follow-up voxel-based analyses confirmed that these relationships were more prominent in the brainstem/cerebellum, with additional sensory-brain findings in the autistic group in the white matter of the primary motor and somatosensory cortices, the occipital lobe, the inferior parietal lobe, and the thalamic projections. LIMITATIONS: All participants communicated via spoken language and acclimated to the sensory environment of an MRI session, which should be considered when assessing the generalizability of this work to the whole of the autism spectrum. CONCLUSIONS: These findings suggest unique brainstem white matter contributions to sensory features in autistic children compared to non-autistic children. The brainstem correlates of sensory features underscore the potential reflex-like nature of behavioral responses to sensory stimuli in autism and have implications for how we conceptualize and address sensory features in autistic populations. En ligne : http://dx.doi.org/10.1186/s13229-022-00524-3 Permalink : https://www.cra-rhone-alpes.org/cid/opac_css/index.php?lvl=notice_display&id=491 Brainstem White Matter Predicts Individual Differences in Manual Motor Difficulties and Symptom Severity in Autism / Brittany G. TRAVERS in Journal of Autism and Developmental Disorders, 45-9 (September 2015)
[article]
Titre : Brainstem White Matter Predicts Individual Differences in Manual Motor Difficulties and Symptom Severity in Autism Type de document : Texte imprimé et/ou numérique Auteurs : Brittany G. TRAVERS, Auteur ; Erin D. BIGLER, Auteur ; Do P. M. TROMP, Auteur ; Nagesh ADLURU, Auteur ; Dan DESTICHE, Auteur ; Danica SAMSIN, Auteur ; Alyson FROEHLICH, Auteur ; Molly D. B. PRIGGE, Auteur ; Tyler C. DUFFIELD, Auteur ; Nicholas LANGE, Auteur ; Andrew L. ALEXANDER, Auteur ; Janet E. LAINHART, Auteur Article en page(s) : p.3030-3040 Langues : Anglais (eng) Mots-clés : Autism Motor Diffusion tensor imaging Brainstem Grip strength Finger tapping Index. décimale : PER Périodiques Résumé : Mounting evidence suggests that poorer motor skills may be related to more severe autism symptoms. This study investigated if atypical white matter microstructure in the brain mediated the relationship between motor skills and ASD symptom severity. Sixty-seven males with ASD and 42 males with typical development (5–33 years old) completed a diffusion tensor imaging scan and measures of grip strength, finger tapping, and autism symptom severity. Within the ASD group, weaker grip strength predicted more severe autism symptoms. Fractional anisotropy of the brainstem’s corticospinal tract predicted both grip strength and autism symptom severity and mediated the relationship between the two. These findings suggest that brainstem white matter may contribute to autism symptoms and grip strength in ASD. En ligne : http://dx.doi.org/10.1007/s10803-015-2467-9 Permalink : https://www.cra-rhone-alpes.org/cid/opac_css/index.php?lvl=notice_display&id=267
in Journal of Autism and Developmental Disorders > 45-9 (September 2015) . - p.3030-3040[article] Brainstem White Matter Predicts Individual Differences in Manual Motor Difficulties and Symptom Severity in Autism [Texte imprimé et/ou numérique] / Brittany G. TRAVERS, Auteur ; Erin D. BIGLER, Auteur ; Do P. M. TROMP, Auteur ; Nagesh ADLURU, Auteur ; Dan DESTICHE, Auteur ; Danica SAMSIN, Auteur ; Alyson FROEHLICH, Auteur ; Molly D. B. PRIGGE, Auteur ; Tyler C. DUFFIELD, Auteur ; Nicholas LANGE, Auteur ; Andrew L. ALEXANDER, Auteur ; Janet E. LAINHART, Auteur . - p.3030-3040.
Langues : Anglais (eng)
in Journal of Autism and Developmental Disorders > 45-9 (September 2015) . - p.3030-3040
Mots-clés : Autism Motor Diffusion tensor imaging Brainstem Grip strength Finger tapping Index. décimale : PER Périodiques Résumé : Mounting evidence suggests that poorer motor skills may be related to more severe autism symptoms. This study investigated if atypical white matter microstructure in the brain mediated the relationship between motor skills and ASD symptom severity. Sixty-seven males with ASD and 42 males with typical development (5–33 years old) completed a diffusion tensor imaging scan and measures of grip strength, finger tapping, and autism symptom severity. Within the ASD group, weaker grip strength predicted more severe autism symptoms. Fractional anisotropy of the brainstem’s corticospinal tract predicted both grip strength and autism symptom severity and mediated the relationship between the two. These findings suggest that brainstem white matter may contribute to autism symptoms and grip strength in ASD. En ligne : http://dx.doi.org/10.1007/s10803-015-2467-9 Permalink : https://www.cra-rhone-alpes.org/cid/opac_css/index.php?lvl=notice_display&id=267 White matter volume in the brainstem and inferior parietal lobule is related to motor performance in children with autism spectrum disorder: A voxel-based morphometry study / Ryuzo HANAIE in Autism Research, 9-9 (September 2016)
[article]
Titre : White matter volume in the brainstem and inferior parietal lobule is related to motor performance in children with autism spectrum disorder: A voxel-based morphometry study Type de document : Texte imprimé et/ou numérique Auteurs : Ryuzo HANAIE, Auteur ; Ikuko MOHRI, Auteur ; Kuriko KAGITANI-SHIMONO, Auteur ; Masaya TACHIBANA, Auteur ; Junko MATSUZAKI, Auteur ; Ikuko HIRATA, Auteur ; Fumiyo NAGATANI, Auteur ; Yoshiyuki WATANABE, Auteur ; Norihiko FUJITA, Auteur ; Masako TANIIKE, Auteur Article en page(s) : p.981-992 Langues : Anglais (eng) Mots-clés : voxel-based morphometry white matter brainstem autism spectrum disorder motor Index. décimale : PER Périodiques Résumé : Many studies have reported poor motor performance in autism spectrum disorder (ASD); however, the underlying brain mechanisms remain unclear. Recent neuroimaging studies have suggested that abnormalities of the white matter (WM) are related to the features of ASD. In this study, we used voxel-based morphometry (VBM) to investigate which WM regions correlate with motor performance in children with ASD, and whether the WM volume in those brain regions differed between children with ASD and typically developing (TD) children. The subjects included 19 children with ASD and 20 TD controls. Motor performance was assessed using the Movement Assessment Battery for Children 2 (M-ABC 2). Children with ASD showed poorer motor performance than did the controls. There was a significant positive correlation between the total test score on the M-ABC 2 and the volume of WM in the brainstem and WM adjacent to the left supramarginal gyrus (SMG). In addition, compared with the TD controls, children with ASD had a decreased volume of WM in the brainstem and adjacent to the left intraparietal sulcus, which is close to the SMG. These findings suggest that structural changes in the WM in the brainstem and left inferior parietal lobule may contribute to poor motor performance in children with ASD. En ligne : http://dx.doi.org/10.1002/aur.1605 Permalink : https://www.cra-rhone-alpes.org/cid/opac_css/index.php?lvl=notice_display&id=294
in Autism Research > 9-9 (September 2016) . - p.981-992[article] White matter volume in the brainstem and inferior parietal lobule is related to motor performance in children with autism spectrum disorder: A voxel-based morphometry study [Texte imprimé et/ou numérique] / Ryuzo HANAIE, Auteur ; Ikuko MOHRI, Auteur ; Kuriko KAGITANI-SHIMONO, Auteur ; Masaya TACHIBANA, Auteur ; Junko MATSUZAKI, Auteur ; Ikuko HIRATA, Auteur ; Fumiyo NAGATANI, Auteur ; Yoshiyuki WATANABE, Auteur ; Norihiko FUJITA, Auteur ; Masako TANIIKE, Auteur . - p.981-992.
Langues : Anglais (eng)
in Autism Research > 9-9 (September 2016) . - p.981-992
Mots-clés : voxel-based morphometry white matter brainstem autism spectrum disorder motor Index. décimale : PER Périodiques Résumé : Many studies have reported poor motor performance in autism spectrum disorder (ASD); however, the underlying brain mechanisms remain unclear. Recent neuroimaging studies have suggested that abnormalities of the white matter (WM) are related to the features of ASD. In this study, we used voxel-based morphometry (VBM) to investigate which WM regions correlate with motor performance in children with ASD, and whether the WM volume in those brain regions differed between children with ASD and typically developing (TD) children. The subjects included 19 children with ASD and 20 TD controls. Motor performance was assessed using the Movement Assessment Battery for Children 2 (M-ABC 2). Children with ASD showed poorer motor performance than did the controls. There was a significant positive correlation between the total test score on the M-ABC 2 and the volume of WM in the brainstem and WM adjacent to the left supramarginal gyrus (SMG). In addition, compared with the TD controls, children with ASD had a decreased volume of WM in the brainstem and adjacent to the left intraparietal sulcus, which is close to the SMG. These findings suggest that structural changes in the WM in the brainstem and left inferior parietal lobule may contribute to poor motor performance in children with ASD. En ligne : http://dx.doi.org/10.1002/aur.1605 Permalink : https://www.cra-rhone-alpes.org/cid/opac_css/index.php?lvl=notice_display&id=294 Relationship between brain stem volume and aggression in children diagnosed with autism spectrum disorder / Rebecca A. LUNDWALL in Research in Autism Spectrum Disorders, 34 (February 2017)
[article]
Titre : Relationship between brain stem volume and aggression in children diagnosed with autism spectrum disorder Type de document : Texte imprimé et/ou numérique Auteurs : Rebecca A. LUNDWALL, Auteur ; Kevin G. STEPHENSON, Auteur ; E. Shannon NEELEY-TASS, Auteur ; Jonathan C. COX, Auteur ; Mikle SOUTH, Auteur ; Erin D. BIGLER, Auteur ; Emily I. ANDERBERG, Auteur ; Molly D. PRIGGE, Auteur ; Blake D. HANSEN, Auteur ; Janet E. LAINHART, Auteur ; Ryan O. KELLEMS, Auteur ; Jo Ann PETRIE, Auteur ; Terisa P. GABRIELSEN, Auteur Article en page(s) : p.44-51 Langues : Anglais (eng) Mots-clés : Autism Aggression Imaging Brainstem Structural MRI Index. décimale : PER Périodiques Résumé : AbstractBackground Aggressive behaviors are common in individuals diagnosed with autism spectrum disorder (ASD) and may be phenotypic indicators of different subtypes within ASD. In current research literature for non-ASD samples, aggression has been linked to several brain structures associated with emotion and behavioral control. However, few if any studies exist investigating brain volume differences in individuals with ASD who have comorbid aggression as indicated by standardized diagnostic and behavioral measures. Method We examined neuroimaging data from individuals rigorously diagnosed with ASD versus typically developing (TD) controls. We began with data from brain volume regions of interest (ROI) taken from previous literature on aggression including the brainstem, amygdala, orbitofrontal cortex, anterior cingulate cortex, and dorsolateral prefrontal cortex. We defined aggression status using the Irritability subscale of the Aberrant Behavior Checklist and used lasso logistic regression to select among these predictor variables. Brainstem volume was the only variable shown to be a predictor of aggression status. Results We found that smaller brainstem volumes are associated with higher odds of being in the high aggression group. Conclusions Understanding brain differences in individuals with ASD who engage in aggressive behavior from those with ASD who do not can inform treatment approaches. Future research should investigate brainstem structure and function in ASD to identify possible mechanisms related to arousal and aggression. En ligne : http://dx.doi.org/10.1016/j.rasd.2016.12.001 Permalink : https://www.cra-rhone-alpes.org/cid/opac_css/index.php?lvl=notice_display&id=298
in Research in Autism Spectrum Disorders > 34 (February 2017) . - p.44-51[article] Relationship between brain stem volume and aggression in children diagnosed with autism spectrum disorder [Texte imprimé et/ou numérique] / Rebecca A. LUNDWALL, Auteur ; Kevin G. STEPHENSON, Auteur ; E. Shannon NEELEY-TASS, Auteur ; Jonathan C. COX, Auteur ; Mikle SOUTH, Auteur ; Erin D. BIGLER, Auteur ; Emily I. ANDERBERG, Auteur ; Molly D. PRIGGE, Auteur ; Blake D. HANSEN, Auteur ; Janet E. LAINHART, Auteur ; Ryan O. KELLEMS, Auteur ; Jo Ann PETRIE, Auteur ; Terisa P. GABRIELSEN, Auteur . - p.44-51.
Langues : Anglais (eng)
in Research in Autism Spectrum Disorders > 34 (February 2017) . - p.44-51
Mots-clés : Autism Aggression Imaging Brainstem Structural MRI Index. décimale : PER Périodiques Résumé : AbstractBackground Aggressive behaviors are common in individuals diagnosed with autism spectrum disorder (ASD) and may be phenotypic indicators of different subtypes within ASD. In current research literature for non-ASD samples, aggression has been linked to several brain structures associated with emotion and behavioral control. However, few if any studies exist investigating brain volume differences in individuals with ASD who have comorbid aggression as indicated by standardized diagnostic and behavioral measures. Method We examined neuroimaging data from individuals rigorously diagnosed with ASD versus typically developing (TD) controls. We began with data from brain volume regions of interest (ROI) taken from previous literature on aggression including the brainstem, amygdala, orbitofrontal cortex, anterior cingulate cortex, and dorsolateral prefrontal cortex. We defined aggression status using the Irritability subscale of the Aberrant Behavior Checklist and used lasso logistic regression to select among these predictor variables. Brainstem volume was the only variable shown to be a predictor of aggression status. Results We found that smaller brainstem volumes are associated with higher odds of being in the high aggression group. Conclusions Understanding brain differences in individuals with ASD who engage in aggressive behavior from those with ASD who do not can inform treatment approaches. Future research should investigate brainstem structure and function in ASD to identify possible mechanisms related to arousal and aggression. En ligne : http://dx.doi.org/10.1016/j.rasd.2016.12.001 Permalink : https://www.cra-rhone-alpes.org/cid/opac_css/index.php?lvl=notice_display&id=298 Visual and Vestibular Induced Eye Movements in Verbal Children and Adults with Autism / Joseph M. FURMAN in Autism Research, 8-6 (December 2015)
PermalinkSaccade dysmetria indicates attenuated visual exploration in autism spectrum disorder / Nico BAST in Journal of Child Psychology and Psychiatry, 62-2 (February 2021)
Permalink