1. Chugani DC, Chugani HT, Wiznitzer M, Parikh S, Evans PA, Hansen RL, Nass R, Janisse JJ, Dixon-Thomas P, Behen M, Rothermel R, Parker JS, Kumar A, Muzik O, Edwards DJ, Hirtz D. {{Efficacy of Low-Dose Buspirone for Restricted and Repetitive Behavior in Young Children with Autism Spectrum Disorder: A Randomized Trial}}. {J Pediatr}. 2015.
OBJECTIVES: To determine safety and efficacy of the 5HT1A serotonin partial agonist buspirone on core autism and associated features in children with autism spectrum disorder (ASD). STUDY DESIGN: Children 2-6 years of age with ASD (N = 166) were randomized to receive placebo or 2.5 or 5.0 mg of buspirone twice daily. The primary objective was to evaluate the effects of 24 weeks of buspirone on the Autism Diagnostic Observation Schedule (ADOS) Composite Total Score. Secondary objectives included evaluating the effects of buspirone on social competence, repetitive behaviors, language, sensory dysfunction, and anxiety and to assess side effects. Positron emission tomography measures of tryptophan metabolism and blood serotonin concentrations were assessed as predictors of buspirone efficacy. RESULTS: There was no difference in the ADOS Composite Total Score between baseline and 24 weeks among the 3 treatment groups (P = .400); however, the ADOS Restricted and Repetitive Behavior score showed a time-by-treatment effect (P = .006); the 2.5-mg buspirone group showed significant improvement (P = .003), whereas placebo and 5.0-mg buspirone groups showed no change. Children in the 2.5-mg buspirone group were more likely to improve if they had fewer foci of increased brain tryptophan metabolism on positron emission tomography (P = .018) or if they showed normal levels of blood serotonin (P = .044). Adverse events did not differ significantly among treatment groups. CONCLUSIONS: Treatment with 2.5 mg of buspirone in young children with ASD might be a useful adjunct therapy to target restrictive and repetitive behaviors in conjunction with behavioral interventions. TRIAL REGISTRATION: ClinicalTrials.gov: NCT00873509.
Lien vers le texte intégral (Open Access ou abonnement)
2. Jory J. {{Abnormal fatty acids in Canadian children with autism}}. {Nutrition}. 2015.
OBJECTIVE: Fatty acids are critical for pediatric neurodevelopment and are abnormal in autism, although prior studies have demonstrated conflicting results and methodological differences. To our knowledge, there are no published data on fatty acid in Canadian children with autism. The aim of this study was to investigate red blood cell and serum fatty acid status to identify whether abnormalities exist in Canadian children with autism, and to enhance future cross-study comparison. METHODS: Eleven Canadian children with autism (3 girls, 8 boys; age 3.05 +/- 0.79 y) and 15 controls (9 girls, 6 boys; age 3.87 +/- 1.06 y) met inclusion criteria, which included prior Diagnostic and Statistical Manual diagnosis of autism spectrum disorder, no recent medication or supplements, no specialty diets, and no recent illness. RESULTS: The children with autism demonstrated lower red blood cell docosahexaenoic acid (P < 0.0003), eicosapentaenoic acid (P < 0.03), arachidonic acid (P < 0.002), and omega-3/omega-6 ratios (P < 0.001). They also demonstrated lower serum docosahexaenoic acid (P < 0.02), arachidonic acid (P < 0.05), and linoleic acid (P < 0.02) levels. CONCLUSIONS: Fatty acids in both serum and red blood cells were abnormal in this small group of Canadian children with autism than in controls, underlining a need for larger age- and sex-matched investigations in this community. A potential role for fatty acid abnormalities within the complex epigenetic etiology of autism is proposed in relation to emerging understanding of relationships between cobalamin metabolism, gut microbiota, and propionic acid production. Lien vers le texte intégral (Open Access ou abonnement)
3. Teng BL, Nikolova VD, Riddick NV, Agster KL, Crowley JJ, Baker LK, Koller BH, Pedersen CA, Jarstfer MB, Moy SS. {{Reversal of social deficits by subchronic oxytocin in two autism mouse models}}. {Neuropharmacology}. 2015.
Social deficits are a hallmark feature of autism spectrum disorder (ASD) and related developmental syndromes. Although there is no standard treatment for social dysfunction, clinical studies have identified oxytocin as a potential therapeutic with prosocial efficacy. We have previously reported that peripheral oxytocin treatment can increase sociability and ameliorate repetitive stereotypy in adolescent mice from the C58/J model of ASD-like behavior. In the present study, we determined that prosocial oxytocin effects were not limited to the adolescent period, since C58/J mice, tested in adulthood, demonstrated significant social preference up to 2 weeks following subchronic oxytocin treatment. Oxytocin was also evaluated in adult mice with underexpression of the N-methyl-D-aspartate receptor NR1 subunit (encoded by Grin1), a genetic model of autism- and schizophrenia-like behavior. Subchronic oxytocin had striking prosocial efficacy in male Grin1 knockdown mice; in contrast, chronic regimens with clozapine (66 mg/kg/day) or risperidone (2 mg/kg/day) failed to reverse deficits in sociability. Neither the subchronic oxytocin regimen, nor chronic treatment with clozapine or risperidone, reversed impaired prepulse inhibition in the Grin1 knockdown mice. Overall, these studies demonstrate oxytocin can enhance sociability in mouse models with divergent genotypes and behavioral profiles, adding to the evidence that this neurohormone could have therapeutic prosocial efficacy across a spectrum of developmental disorders.