1. James S, Montgomery P, Williams K. {{Omega-3 fatty acids supplementation for autism spectrum disorders (ASD)}}. {Cochrane Database Syst Rev};2011;11:CD007992.
BACKGROUND: It has been suggested that impairments associated with autism spectrum disorders (ASD) may be partially explained by deficits of omega-3 fatty acids, and that supplementation of these essential fatty acids may lead to improvement of symptoms. OBJECTIVES: To review the efficacy of omega-3 fatty acids for improving core features of ASD (for example, social interaction, communication, and stereotypies) and associated symptoms. SEARCH STRATEGY: We searched the following databases on 2 June 2010: CENTRAL (2010, Issue 2), MEDLINE (1950 to May Week 3 2010), EMBASE (1980 to 2010 Week 21), PsycINFO (1806 to current), BIOSIS (1985 to current), CINAHL (1982 to current), Science Citation Index (1970 to current), Social Science Citation Index (1970 to current), metaRegister of Controlled Trials (20 November 2008) and ClinicalTrials.gov (10 December 2010). Dissertation Abstracts International was searched on 10 December 2008, but was no longer available to the authors or editorial base in 2010. SELECTION CRITERIA: All randomised controlled trials of omega-3 fatty acids supplementation compared to placebo in individuals with ASD. DATA COLLECTION AND ANALYSIS: Three authors independently selected studies, assessed them for risk of bias and extracted relevant data. We conducted meta-analysis of the included studies for three primary outcomes (social interaction, communication, and stereotypy) and one secondary outcome (hyperactivity). MAIN RESULTS: We included two trials with a total of 37 children diagnosed with ASD who were randomised into groups that received either omega-3 fatty acids supplementation or a placebo. We excluded six trials because they were either non-randomised controlled trials, did not contain a control group, or the control group did not receive a placebo. Overall, there was no evidence that omega-3 supplements had an effect on social interaction (mean difference (MD) 0.82, 95% confidence interval (CI) -2.84 to 4.48, I(2) = 0%), communication (MD 0.62, 95% CI -0.89 to 2.14, I(2) = 0%), stereotypy (MD 0.77, 95% CI -0.69 to 2.22, I(2) = 8%), or hyperactivity (MD 3.46, 95% CI -0.79 to 7.70, I(2) = 0%). AUTHORS’ CONCLUSIONS: To date there is no high quality evidence that omega-3 fatty acids supplementation is effective for improving core and associated symptoms of ASD. Given the paucity of rigorous studies in this area, there is a need for large well-conducted randomised controlled trials that examine both high and low functioning individuals with ASD, and that have longer follow-up periods.
Lien vers le texte intégral (Open Access ou abonnement)
2. Meguid NA, Fahim C, Sami R, Nashaat NH, Yoon U, Anwar M, El-Dessouky HM, Shahine EA, Ibrahim AS, Mancini-Marie A, Evans AC. {{Cognition and lobar morphology in full mutation boys with fragile X syndrome}}. {Brain Cogn};2011 (Nov 7)
The aims of the present study are twofold: (1) to examine cortical morphology (CM) associated with alterations in cognition in fragile X syndrome (FXS); (2) to characterize the CM profile of FXS versus FXS with an autism diagnosis (FXS+Aut) as a preliminary attempt to further elucidate the behavioral distinctions between the two sub-groups. We used anatomical magnetic resonance imaging surface-based morphometry in 21 male children (FXS N=11 and age [2.27-13.3] matched controls [C] N=10). We found (1) increased whole hemispheric and lobar cortical volume, cortical thickness and cortical complexity bilaterally, yet insignificant changes in hemispheric surface area and gyrification index in FXS compared to C; (2) linear regression analyses revealed significant negative correlations between CM and cognition; (3) significant CM differences between FXS and FXS+Aut associated with their distinctive behavioral phenotypes. These findings are critical in understanding the neuropathophysiology of one of the most common intellectual deficiency syndromes associated with altered cognition as they provide human in vivo information about genetic control of CM and cognition.
Lien vers le texte intégral (Open Access ou abonnement)
3. Tobiasova Z, Lingen KH, Scahill L, Leckman JF, Zhang Y, Chae W, McCracken JT, McDougle CJ, Vitiello B, Tierney E, Aman MG, Arnold LE, Katsovich L, Hoekstra PJ, Volkmar F, Bothwell AL, Kawikova I. {{Risperidone-Related Improvement of Irritability in Children with Autism Is not Associated with Changes in Serum of Epidermal Growth Factor and Interleukin-13}}. {J Child Adolesc Psychopharmacol};2011 (Nov 9)
Abstract Risperidone has been shown to improve serious behavioral problems in children with autism. Here we asked whether risperidone-associated improvement was related to changes in concentrations of inflammatory molecules in the serum of these subjects. Seven molecules were identified as worthy of further assessment by performing a pilot analysis of 31 inflammatory markers in 21 medication-free subjects with autism versus 15 healthy controls: epidermal growth factor (EGF), interferon-? (IFN-?), interleukin (IL)-13, IL-17, monocyte chemoattractant protein-1 (MCP-1), IL-1 and IL-1-receptor antagonist. Serum concentrations of these markers were then established in a different set of subjects that participated in a double-blind, clinical trial and an expanded group of healthy subjects. In the first analysis, samples obtained from subjects with autism at baseline visits were compared to visits after 8-week treatment with placebo (n=37) or risperidone (n=40). The cytokine concentrations remained stable over the 8-week period for both risperidone and placebo groups. In the second analysis, we explored further the differences between medication-free subjects with autism (n=77) and healthy controls (recruited independently; n=19). Serum levels of EGF were elevated in subjects with autism (median=103?pg/mL, n=75) in comparison to healthy controls (75?pg/mL, n=19; p<0.05), and levels of IL-13 were decreased in autism (median=0.8?pg/mL, n=77) in comparison to controls (9.8?pg/mL, n=19; p=0.0003). These changes did not correlate with standardized measures used for a diagnosis of autism. In summary, risperidone-induced clinical improvement in subjects with autism was not associated with changes in the serum inflammatory markers measured. Whether altered levels of EGF and IL-13 play a role in the pathogenesis or phenotype of autism requires further investigation.
Lien vers le texte intégral (Open Access ou abonnement)
4. Watson LR, Roberts JE, Baranek GT, Mandulak KC, Dalton JC. {{Behavioral and Physiological Responses to Child-Directed Speech of Children with Autism Spectrum Disorders or Typical Development}}. {J Autism Dev Disord};2011 (Nov 10)
Young boys with autism were compared to typically developing boys on responses to nonsocial and child-directed speech (CDS) stimuli. Behavioral (looking) and physiological (heart rate and respiratory sinus arrhythmia) measures were collected. Boys with autism looked equally as much as chronological age-matched peers at nonsocial stimuli, but less at CDS stimuli. Boys with autism and language age-matched peers differed in patterns of looking at live versus videotaped CDS stimuli. Boys with autism demonstrated faster heart rates than chronological age-matched peers, but did not differ significantly on respiratory sinus arrhythmia. Reduced attention during CDS may restrict language-learning opportunities for children with autism. The heart rate findings suggest that young children with autism have a nonspecific elevated arousal level.