Pubmed du 14/03/14

Pubmed du jour

2014-03-14 12:03:50

1. {{Improving autism care: the NICE quality standard}}. {Perspect Public Health};2014 (Mar);134(2):64.

Lien vers le texte intégral (Open Access ou abonnement)

2. Carson AM, Salowitz NM, Scheidt RA, Dolan BK, Van Hecke AV. {{Electroencephalogram Coherence in Children With and Without Autism Spectrum Disorders: Decreased Interhemispheric Connectivity in Autism}}. {Autism Res};2014 (Mar 12)
Electroencephalogram coherence was measured in children with autism spectrum disorders (ASD) and control children at baseline and while watching videos of a familiar and unfamiliar person reading a story. Coherence was measured between the left and right hemispheres of the frontal, parietal, and temporal-parietal lobes (interhemispheric) and between the frontal and parietal lobes in each hemisphere (intrahemispheric). A data-reduction technique was employed to identify the frequency (alpha) that yielded significant differences in video conditions. Children with ASD displayed reduced coherence at the alpha frequency between the left and right temporal-parietal lobes in all conditions and reduced coherence at the alpha frequency between left and right frontal lobes during baseline. No group differences in intrahemispheric coherence at the alpha frequency emerged at the chosen statistical threshold. Results suggest decreased interhemispheric connectivity in frontal and temporal-parietal regions in children with ASD compared to controls. Autism Res 2014, : -. (c) 2014 International Society for Autism Research, Wiley Periodicals, Inc.

Lien vers le texte intégral (Open Access ou abonnement)

3. Gamez-Del-Estal MM, Contreras I, Prieto-Perez R, Ruiz-Rubio M. {{Epigenetic effect of testosterone in the behavior of C. elegans. A clue to explain androgen-dependent autistic traits?}}. {Front Cell Neurosci};2014;8:69.

Current research indicates that the causes of autism spectrum disorders (ASDs) are multifactorial and include both genetic and environmental factors. To date, several works have associated ASDs with mutations in genes that encode proteins involved in neuronal synapses; however other factors and the way they can interact with the development of the nervous system remain largely unknown. Some studies have established a direct relationship between risk for ASDs and the exposure of the fetus to high testosterone levels during the prenatal stage. In this work, in order to explain possible mechanisms by which this androgenic hormone may interact with the nervous system, C. elegans was used as an experimental model. We observed that testosterone was able to alter the behavioral pattern of the worm, including the gentle touch response and the pharyngeal pumping rate. This impairment of the behavior was abolished using specific RNAi against genes orthologous to the human androgen receptor gene. The effect of testosterone was eliminated in the nhr-69 (ok1926) deficient mutant, a putative ortholog of human AR gene, suggesting that this gene encodes a receptor able to interact with the hormone. On the other hand the testosterone effect remained in the gentle touch response during four generations in the absence of the hormone, indicating that some epigenetic mechanisms could be involved. Sodium butyrate, a histone deacetylase inhibitor, was able to abolish the effect of testosterone. In addition, the lasting effect of testosterone was eliminated after the dauer stage. These results suggest that testosterone may impair the nervous system function generating transgenerational epigenetic marks in the genome. This work may provide new paradigms for understanding biological mechanisms involved in ASDs traits.

Lien vers le texte intégral (Open Access ou abonnement)

4. Han DH, Yoo HJ, Kim BN, McMahon W, Renshaw PF. {{Brain activity of adolescents with high functioning autism in response to emotional words and facial emoticons}}. {PLoS One};2014;9(3):e91214.

Studies of social dysfunction in patients with autism spectrum disorder (ASD) have generally focused on the perception of emotional words and facial affect. Brain imaging studies have suggested that the fusiform gyrus is associated with both the comprehension of language and face recognition. We hypothesized that patients with ASD would have decreased ability to recognize affect via emotional words and facial emoticons, relative to healthy comparison subjects. In addition, we expected that this decreased ability would be associated with altered activity of the fusiform gyrus in patients with ASD. Ten male adolescents with ASDs and ten age and sex matched healthy comparison subjects were enrolled in this case-control study. The diagnosis of autism was further evaluated with the Autism Diagnostic Observation Schedule. Brain activity was assessed using functional magnetic resonance imaging (fMRI) in response to emotional words and facial emoticon presentation. Sixty emotional words (45 pleasant words +15 unpleasant words) were extracted from a report on Korean emotional terms and their underlying dimensions. Sixty emoticon faces (45 pleasant faces +15 unpleasant faces) were extracted and modified from on-line sites. Relative to healthy comparison subjects, patients with ASD have increased activation of fusiform gyrus in response to emotional aspects of words. In contrast, patients with ASD have decreased activation of fusiform gyrus in response to facial emoticons, relative to healthy comparison subjects. We suggest that patients with ASD are more familiar with word descriptions than facial expression as depictions of emotion.

Lien vers le texte intégral (Open Access ou abonnement)

5. Khwaja OS, Ho E, Barnes KV, O’Leary HM, Pereira LM, Finkelstein Y, Nelson CA, 3rd, Vogel-Farley V, Degregorio G, Holm IA, Khatwa U, Kapur K, Alexander ME, Finnegan DM, Cantwell NG, Walco AC, Rappaport L, Gregas M, Fichorova RN, Shannon MW, Sur M, Kaufmann WE. {{Safety, pharmacokinetics, and preliminary assessment of efficacy of mecasermin (recombinant human IGF-1) for the treatment of Rett syndrome}}. {Proc Natl Acad Sci U S A};2014 (Mar 12)
Rett syndrome (RTT) is a severe X-linked neurodevelopmental disorder mainly affecting females and is associated with mutations in MECP2, the gene encoding methyl CpG-binding protein 2. Mouse models suggest that recombinant human insulin-like growth factor 1 (IGF-1) (rhIGF1) (mecasermin) may improve many clinical features. We evaluated the safety, tolerability, and pharmacokinetic profiles of IGF-1 in 12 girls with MECP2 mutations (9 with RTT). In addition, we performed a preliminary assessment of efficacy using automated cardiorespiratory measures, EEG, a set of RTT-oriented clinical assessments, and two standardized behavioral questionnaires. This phase 1 trial included a 4-wk multiple ascending dose (MAD) (40-120 mug/kg twice daily) period and a 20-wk open-label extension (OLE) at the maximum dose. Twelve subjects completed the MAD and 10 the entire study, without evidence of hypoglycemia or serious adverse events. Mecasermin reached the CNS compartment as evidenced by the increase in cerebrospinal fluid IGF-1 levels at the end of the MAD. The drug followed nonlinear kinetics, with greater distribution in the peripheral compartment. Cardiorespiratory measures showed that apnea improved during the OLE. Some neurobehavioral parameters, specifically measures of anxiety and mood also improved during the OLE. These improvements in mood and anxiety scores were supported by reversal of right frontal alpha band asymmetry on EEG, an index of anxiety and depression. Our data indicate that IGF-1 is safe and well tolerated in girls with RTT and, as demonstrated in preclinical studies, ameliorates certain breathing and behavioral abnormalities.

Lien vers le texte intégral (Open Access ou abonnement)

6. Lazar M, Miles LM, Babb JS, Donaldson JB. {{Axonal deficits in young adults with High Functioning Autism and their impact on processing speed}}. {Neuroimage Clin};2014;4:417-425.

Microstructural white matter deficits in Autism Spectrum Disorders (ASD) have been suggested by both histological findings and Diffusion Tensor Imaging (DTI) studies, which show reduced fractional anisotropy (FA) and increased mean diffusivity (MD). However, imaging reports are generally not consistent across studies and the underlying physiological causes of the reported differences in FA and MD remain poorly understood. In this study, we sought to further characterize white matter deficits in ASD by employing an advanced diffusion imaging method, the Diffusional Kurtosis Imaging (DKI), and a two-compartment diffusion model of white matter. This model differentially describes intra- and extra-axonal white matter compartments using Axonal Water Fraction (faxon ) a measure reflecting axonal caliber and density, and compartment-specific diffusivity measures. Diagnostic utility of these measures and associations with processing speed performance were also examined. Comparative studies were conducted in 16 young male adults with High Functioning Autism (HFA) and 17 typically developing control participants (TDC). Significantly decreased faxon was observed in HFA compared to the control group in most of the major white matter tracts, including the corpus callosum, cortico-spinal tracts, and superior longitudinal, inferior longitudinal and inferior fronto-occipital fasciculi. Intra-axonal diffusivity (Daxon ) was also found to be reduced in some of these regions. Decreased axial extra-axonal diffusivity (ADextra ) was noted in the genu of the corpus callosum. Reduced processing speed significantly correlated with decreased faxon and Daxon in several tracts. faxon of the left cortico-spinal tract and superior longitudinal fasciculi showed good accuracy in discriminating the HFA and TDC groups. In conclusion, these findings suggest altered axonal microstructure in young adults with HFA which is associated with reduced processing speed. Compartment-specific diffusion metrics appear to improve specificity and sensitivity to white matter deficits in this population.

Lien vers le texte intégral (Open Access ou abonnement)

7. Mezzelani A, Landini M, Facchiano F, Raggi ME, Villa L, Molteni M, De Santis B, Brera C, Caroli AM, Milanesi L, Marabotti A. {{Environment, dysbiosis, immunity and sex-specific susceptibility: A translational hypothesis for regressive autism pathogenesis}}. {Nutr Neurosci};2014 (Jan 21)
Background Autism is an increasing neurodevelopmental disease that appears by 3 years of age, has genetic and/or environmental etiology, and often shows comorbid situations, such as gastrointestinal (GI) disorders. Autism has also a striking sex-bias, not fully genetically explainable. Objective Our goal was to explain how and in which predisposing conditions some compounds can impair neurodevelopment, why this occurs in the first years of age, and, primarily, why more in males than females. Methods We reviewed articles regarding the genetic and environmental etiology of autism and toxins effects on animal models selected from PubMed and databases about autism and toxicology. Discussion Our hypothesis proposes that in the first year of life, the decreasing of maternal immune protection and child immune-system immaturity create an immune vulnerability to infection diseases that, especially if treated with antibiotics, could facilitate dysbiosis and GI disorders. This condition triggers a vicious circle between immune system impairment and increasing dysbiosis that leads to leaky gut and neurochemical compounds and/or neurotoxic xenobiotics production and absorption. This alteration affects the ‘gut-brain axis’ communication that connects gut with central nervous system via immune system. Thus, metabolic pathways impaired in autistic children can be affected by genetic alterations or by environment-xenobiotics interference. In addition, in animal models many xenobiotics exert their neurotoxicity in a sex-dependent manner. Conclusions We integrate fragmented and multi-disciplinary information in a unique hypothesis and first disclose a possible environmental origin for the imbalance of male:female distribution of autism, reinforcing the idea that exogenous factors are related to the recent rise of this disease.

Lien vers le texte intégral (Open Access ou abonnement)

8. Ohba C, Nabatame S, Iijima Y, Nishiyama K, Tsurusaki Y, Nakashima M, Miyake N, Tanaka F, Ozono K, Saitsu H, Matsumoto N. {{De novo WDR45 mutation in a patient showing clinically Rett syndrome with childhood iron deposition in brain}}. {J Hum Genet};2014 (Mar 13)
Rett syndrome (RTT) is a neurodevelopmental disorder mostly caused by MECP2 mutations. We identified a de novo WDR45 mutation, which caused a subtype of neurodegeneration with brain iron accumulation, in a patient showing clinically typical RTT. The mutation (c.830+1G>A) led to aberrant splicing in lymphoblastoid cells. Sequential brain magnetic resonance imaging demonstrated that iron deposition in the globus pallidus and the substantia nigra was observed as early as at 11 years of age. Because the patient showed four of the main RTT diagnostic criteria, WDR45 should be investigated in patients with RTT without MECP2 mutations.Journal of Human Genetics advance online publication, 13 March 2014; doi:10.1038/jhg.2014.18.

Lien vers le texte intégral (Open Access ou abonnement)

9. Stagg SD, Linnell KJ, Heaton P. {{Investigating eye movement patterns, language, and social ability in children with autism spectrum disorder}}. {Dev Psychopathol};2014 (Mar 12):1-9.

Although all intellectually high-functioning children with autism spectrum disorder (ASD) display core social and communication deficits, some develop language within a normative timescale and others experience significant delays and subsequent language impairment. Early attention to social stimuli plays an important role in the emergence of language, and reduced attention to faces has been documented in infants later diagnosed with ASD. We investigated the extent to which patterns of attention to social stimuli would differentiate early and late language onset groups. Children with ASD (mean age = 10 years) differing on language onset timing (late/normal) and a typically developing comparison group completed a task in which visual attention to interacting and noninteracting human figures was mapped using eye tracking. Correlations on visual attention data and results from tests measuring current social and language ability were conducted. Patterns of visual attention did not distinguish typically developing children and ASD children with normal language onset. Children with ASD and late language onset showed significantly reduced attention to salient social stimuli. Associations between current language ability and social attention were observed. Delay in language onset is associated with current language skills as well as with specific eye-tracking patterns.

Lien vers le texte intégral (Open Access ou abonnement)

10. Westmark CJ. {{Soy infant formula and seizures in children with autism: a retrospective study}}. {PLoS One};2014;9(3):e80488.

Seizures are a common phenotype in many neurodevelopmental disorders including fragile X syndrome, Down syndrome and autism. We hypothesized that phytoestrogens in soy-based infant formula were contributing to lower seizure threshold in these disorders. Herein, we evaluated the dependence of seizure incidence on infant formula in a population of autistic children. Medical record data were obtained on 1,949 autistic children from the SFARI Simplex Collection. An autism diagnosis was determined by scores on the ADI-R and ADOS exams. The database included data on infant formula use, seizure incidence, the specific type of seizure exhibited and IQ. Soy-based formula was utilized in 17.5% of the study population. Females comprised 13.4% of the subjects. There was a 2.6-fold higher rate of febrile seizures [4.2% versus 1.6%, OR = 2.6, 95% CI = 1.3-5.3], a 2.1-fold higher rate of epilepsy comorbidity [3.6% versus 1.7%, OR = 2.2, 95% CI = 1.1-4.7] and a 4-fold higher rate of simple partial seizures [1.2% versus 0.3%, OR = 4.8, 95% CI = 1.0-23] in the autistic children fed soy-based formula. No statistically significant associations were found with other outcomes including: IQ, age of seizure onset, infantile spasms and atonic, generalized tonic clonic, absence and complex partial seizures. Limitations of the study included: infant formula and seizure data were based on parental recall, there were significantly less female subjects, and there was lack of data regarding critical confounders such as the reasons the subjects used soy formula, age at which soy formula was initiated and the length of time on soy formula. Despite these limitations, our results suggest that the use of soy-based infant formula may be associated with febrile seizures in both genders and with a diagnosis of epilepsy in males in autistic children. Given the lack of data on critical confounders and the retrospective nature of the study, a prospective study is required to confirm the association.

Lien vers le texte intégral (Open Access ou abonnement)