1. Fernandez BA, Roberts W, Chung B, Weksberg R, Meyn S, Szatmari P, Joseph-George AM, Mackay S, Whitten K, Noble B, Vardy C, Crosbie V, Luscombe S, Tucker E, Turner L, Marshall CR, Scherer SW. {{Phenotypic Spectrum Associated with De Novo and Inherited Deletions and Duplications at 16p11.2 in Individuals Ascertained for Diagnosis of Autism Spectrum Disorder}}. {J Med Genet};2009 (Sep 15)
BACKGROUND: Recurrent microdeletions and microduplications of ~555kb at 16p11.2 confer susceptibility to autism spectrum disorder (ASD) in up to 1% of ASD patients. No physical or behavioral features have been identified that distinguish these individuals as having a distinct ASD subtype, but clinical data are limited. METHODS: We report five autistic probands identified by microarray analysis with copy number variation (CNV) of 16p11.2 (three deletions, two duplications). Each patient was assessed for ASD and dysmorphic features. We also describe a deletion-positive 26-month old female who has developmental delay (DD) and autistic features. RESULTS: Proband 1 (female with ASD, de novo deletion) is not dysmorphic. Proband 2 (male with autism, de novo deletion) and proband 3 and his brother (males with autism, inherited deletions) are dysmorphic, but the two probands do not resemble one another. Proband 3’s mother has mild mental retardation (MR), minor dysmorphism and meets the criteria for ASD. Proband 4 (dysmorphic autistic male, de novo duplication) had a congenital diaphragmatic hernia. Proband 5 (non-dysmorphic ASD female with a duplication) has two apparently healthy duplication-positive relatives. Probands 1 and 2 have deletion-negative siblings with ASD and Asperger syndrome, respectively. The 6th proband (a female with DD and an inherited duplication) is dysmorphic, but has oligohydramnios sequence. CONCLUSIONS: The phenotypic spectrum associated with CNV at 16p11.2 includes ASD, MR/DD and/or possibly other primary psychiatric disorders. Compared with the microduplications, the reciprocal microdeletions are more likely to be penetrant and to be associated with non-specific major or minor dysmorphism. There are deletion-positive ASD probands with a less severe phenotype than deletion-negative ASD siblings underscoring the significant phenotypic heterogeneity.
2. Narita M, Oyabu A, Imura Y, Kamada N, Yokoyama T, Tano K, Uchida A, Narita N. {{Nonexploratory Movement and Behavioral Alterations in a Thalidomide or Valproic Acid-induced Autism Model Rat}}. {Neurosci Res};2009 (Sep 12)
Autism is a behaviorally characterized disorder with impairments in social interactions, as well as stereotyped, repetitive patterns of behaviors and interests. Exposure of rat fetuses to thalidomide (THAL) or valproic acid (VPA) on the ninth day of gestation has been reported as a useful model for human autism. We have shown that early serotonergic neural development is disrupted in these rats. In the current study, we used a radial maze and open field experimental paradigm to investigate whether these rats present behavioral and/or learning aberrations. THAL (500mg/kg), VPA (800mg/kg), or vehicle was administered orally to E9 pregnant rats at 7-10 weeks of age. Although the mean number of correct and incorrect arm choices in the initial eight arm choices did not differ between control and teratogen-exposed groups, achievement of learning (seven or eight consecutive correct choices for 3 consecutive days for individual rats) seemed to be impaired in teratogen-exposed groups. Interestingly, average time to explore the maze task was shorter in the teratogen-exposed groups, indicating that correct choice might be due to mere coincidence (i.e.; nonexploratory movement). Unexpectedly, no significant differences were observed in social interaction in these rats. These results indicate that prenatal exposure to THAL and VPA might alter behavior in a manner that is, in part, consistent with human autism.
3. Verhoeven JS, De Cock P, Lagae L, Sunaert S. {{Neuroimaging of autism}}. {Neuroradiology};2009 (Sep 15)
Neuroimaging studies done by means of magnetic resonance imaging (MRI) have provided important insights into the neurobiological basis for autism. The aim of this article is to review the current state of knowledge regarding brain abnormalities in autism. Results of structural MRI studies dealing with total brain volume, the volume of the cerebellum, caudate nucleus, thalamus, amygdala and the area of the corpus callosum are summarised. In the past 5 years also new MRI applications as functional MRI and diffusion tensor imaging brought considerable new insights in the pathophysiological mechanisms of autism. Dysfunctional activation in key areas of verbal and non-verbal communication, social interaction, and executive functions are revised. Finally, we also discuss white matter alterations in important communication pathways in the brain of autistic patients.