Pubmed du 20/06/13

Pubmed du jour

2013-06-20 12:03:50

1. Esposito G, Pasca SP. {{Motor abnormalities as a putative endophenotype for Autism Spectrum Disorders}}. {Front Integr Neurosci};2013;7:43.

Autism Spectrum Disorders (ASDs) represent a complex group of behaviorally defined conditions with core deficits in social communication and the presence of repetitive and restrictive behaviors. To date, neuropathological studies have failed to identify pathognomonic cellular features for ASDs and there remains a fundamental disconnection between the complex clinical aspects of ASDs and the underlying neurobiology. Although not listed among the core diagnostic domains of impairment in ASDs, motor abnormalities have been consistently reported across the spectrum. In this perspective article, we summarize the evidence that supports the use of motor abnormalities as a putative endophenotype for ASDs. We argue that because these motor abnormalities do not directly depend on social or linguistic development, they may serve as an early disease indicator. Furthermore, we propose that stratifying patients based on motor development could be useful not only as an outcome predictor and in identifying more specific treatments for different ASDs categories, but also in exposing neurobiological mechanisms.

Lien vers le texte intégral (Open Access ou abonnement)

2. Frye RE, Delatorre R, Taylor H, Slattery J, Melnyk S, Chowdhury N, James SJ. {{Redox metabolism abnormalities in autistic children associated with mitochondrial disease}}. {Transl Psychiatry};2013;3:e273.

Research studies have uncovered several metabolic abnormalities associated with autism spectrum disorder (ASD), including mitochondrial disease (MD) and abnormal redox metabolism. Despite the close connection between mitochondrial dysfunction and oxidative stress, the relation between MD and oxidative stress in children with ASD has not been studied. Plasma markers of oxidative stress and measures of cognitive and language development and ASD behavior were obtained from 18 children diagnosed with ASD who met criteria for probable or definite MD per the Morava et al. criteria (ASD/MD) and 18 age and gender-matched ASD children without any biological markers or symptoms of MD (ASD/NoMD). Plasma measures of redox metabolism included reduced free glutathione (fGSH), oxidized glutathione (GSSG), the fGSH/GSSG ratio and 3-nitrotyrosine (3NT). In addition, a plasma measure of chronic immune activation, 3-chlorotyrosine (3CT), was also measured. Language was measured using the preschool language scale or the expressive one-word vocabulary test (depending on the age), adaptive behaviour was measured using the Vineland Adaptive Behavior Scale (VABS) and core autism symptoms were measured using the Autism Symptoms Questionnaire and the Social Responsiveness Scale. Children with ASD/MD were found to have lower scores on the communication and daily living skill subscales of the VABS despite having similar language and ASD symptoms. Children with ASD/MD demonstrated significantly higher levels of fGSH/GSSG and lower levels of GSSG as compared with children with ASD/NoMD, suggesting an overall more favourable glutathione redox status in the ASD/MD group. However, compare with controls, both ASD groups demonstrated lower fGSH and fGSH/GSSG, demonstrating that both groups suffer from redox abnormalities. Younger ASD/MD children had higher levels of 3CT than younger ASD/NoMD children because of an age-related effect in the ASD/MD group. Both ASD groups demonstrated significantly higher 3CT levels than control subjects, suggesting that chronic inflammation was present in both groups of children with ASD. Interestingly, 3NT was found to correlate positively with several measures of cognitive function, development and behavior for the ASD/MD group, but not the ASD/NoMD group, such that higher 3NT concentrations were associated with more favourable adaptive behaviour, language and ASD-related behavior. To determine whether difference in receiving medications and/or supplements could account for the differences in redox and inflammatory biomarkers across ASD groups, we examined differences in medication and supplements across groups and their effect of redox and inflammatory biomarkers. Overall, significantly more participants in the ASD/MD group were receiving folate, vitamin B12, carnitine, co-enzyme Q10, B vitamins and antioxidants. We then determined whether folate, carnitine, co-enzyme Q10, B vitamins and/or antioxidants influenced redox or inflammatory biomarkers. Antioxidant supplementation was associated with a significantly lower GSSG, whereas antioxidants, co-enzyme Q10 and B vitamins were associated with a higher fGSH/GSSG ratio. There was no relation between folate, carnitine, co-enzyme Q10, B vitamins and antioxidants with 3NT, 3CT or fGSH. Overall, our findings suggest that ASD/MD children with a more chronic oxidized microenvironment have better development. We interpret this finding in light of the fact that more active mitochondrial can create a greater oxidized microenvironment especially when dysfunctional. Thus, compensatory upregulation of mitochondria which are dysfunctional may both increase activity and function at the expense of a more oxidized microenvironment. Although more ASD/MD children were receiving certain supplements, the use of such supplements were not found to be related to the redox biomarkers that were related to cognitive development or behavior in the ASD/MD group but could possibly account for the difference in glutathione metabolism noted between groups. This study suggests that different subgroups of children with ASD have different redox abnormalities, which may arise from different sources. A better understanding of the relationship between mitochondrial dysfunction in ASD and oxidative stress, along with other factors that may contribute to oxidative stress, will be critical to understanding how to guide treatment and management of ASD children. This study also suggests that it is important to identify ASD/MD children as they may respond differently to specific treatments because of their specific metabolic profile.

Lien vers le texte intégral (Open Access ou abonnement)

3. Kinast K, Peeters D, Kolk SM, Schubert D, Homberg JR. {{Genetic and pharmacological manipulations of the serotonergic system in early life: neurodevelopmental underpinnings of autism-related behavior}}. {Front Cell Neurosci};2013;7:72.

Serotonin, in its function as neurotransmitter, is well-known for its role in depression, autism and other neuropsychiatric disorders, however, less known as a neurodevelopmental factor. The serotonergic system is one of the earliest to develop during embryogenesis and early changes in serotonin levels can have large consequences for the correct development of specific brain areas. The regulation and functioning of serotonin is influenced by genetic risk factors, such as the serotonin transporter polymorphism in humans. This polymorphism is associated with anxiety-related symptoms, changes in social behavior, and cortical gray and white matter changes also seen in patients suffering from autism spectrum disorders (ASD). The human polymorphism can be mimicked by the knockout of the serotonin transporter in rodents, which are as a model system therefore vital to explore the precise neurobiological mechanisms. Moreover, there are pharmacological challenges influencing serotonin in early life, like prenatal/neonatal exposure to selective serotonin reuptake inhibitors (SSRI) in depressed pregnant women. There is accumulating evidence that this dysregulation of serotonin during critical phases of brain development can lead to ASD-related symptoms in children, and reduced social behavior and increased anxiety in rodents. Furthermore, prenatal valproic acid (VPA) exposure, a mood stabilizing drug which is also thought to interfere with serotonin levels, has the potency to induce ASD-like symptoms and to affect the development of the serotonergic system. Here, we review and compare the neurodevelopmental and behavioral consequences of serotonin transporter gene variation, and prenatal SSRI and VPA exposure in the context of ASD.

Lien vers le texte intégral (Open Access ou abonnement)

4. Wohr M, Scattoni ML. {{Neurobiology of autism: A foreword}}. {Behav Brain Res};2013 (Jun 15)

Lien vers le texte intégral (Open Access ou abonnement)