1. Nomura J, Mardo M, Takumi T. Molecular signatures from multi-omics of autism spectrum disorders and schizophrenia. Journal of neurochemistry. 2021; 159(4): 647-59.

The genetic and phenotypic heterogeneity of autism spectrum disorder (ASD) impedes the unification of multiple biological hypotheses in an attempt to explain the complex features of ASD, such as impaired social communication, social interaction deficits, and restricted and repetitive patterns of behavior. However, recent psychiatric genetic studies have identified numerous risk genes and chromosome loci (copy number variation: CNV) which enable us to analyze at the single gene level and utilize system-level approaches. In this review, we focus on ASD as a major neurodevelopmental disorder and review recent findings mainly from the bioinformatics of omics studies. Additionally, by comparing these data with other major psychiatric disorders, including schizophrenia (SCZ), we identify unique characteristics of both diseases from multiple enrichment, pathway, and protein-protein interaction networks (PPIs) analyses using susceptible genes found in recent large-scale genetic studies. These unified, systematic approaches highlight unique characteristics of both disorders from multiple aspects and demonstrate how convergent pathways can contribute to an understanding of the complex etiology of such neurodevelopmental and neuropsychiatric disorders.

Lien vers le texte intégral (Open Access ou abonnement)

2. Zhuang Q, Zheng X, Becker B, Lei W, Xu X, Kendrick KM. Intranasal vasopressin like oxytocin increases social attention by influencing top-down control, but additionally enhances bottom-up control. Psychoneuroendocrinology. 2021; 133: 105412.

The respective roles of the neuropeptides arginine vasopressin (AVP) and oxytocin (OXT) in modulating social cognition and for therapeutic intervention in autism spectrum disorder have not been fully established. In particular, while numerous studies have demonstrated effects of oxytocin in promoting social attention the role of AVP has not been examined. The present study employed a randomized, double-blind, placebo (PLC)-controlled between-subject design to explore the social- and emotion-specific effects of AVP on both bottom-up and top-down attention processing with a validated emotional anti-saccade eye-tracking paradigm in 80 healthy male subjects (PLC = 40, AVP = 40). Our findings showed that AVP increased the error rate for social (angry, fearful, happy, neutral and sad faces) but not non-social (oval shapes) stimuli during the anti-saccade condition and reduced error rates in the pro-saccade condition. Comparison of these findings with a previous study (sample size: PLC = 33, OXT = 33) using intranasal oxytocin revealed similar effects of the two peptides on anti-saccade errors, although with some difference in effects of specific face emotions, but a significantly greater effect of AVP on pro-saccades. Both peptides also produced a post-task anxiolytic effect by reducing state anxiety. Together these findings suggested that both AVP and OXT decrease goal-directed top-down attention control to social salient stimuli but that AVP more potently increased bottom-up social attentional processing.

Lien vers le texte intégral (Open Access ou abonnement)