Pubmed du 22/01/14

Pubmed du jour

2014-01-22 12:03:50

1. Li JL, Li YJ, Zhang KJ, Lan L, Shi JG, Yang X, Zhang MJ, Zhang FC, Gao XC. {{No association between FGD1 gene polymorphisms and intellectual developmental disability in the Qinba mountain area}}. {Genet Mol Res};2014;13(1):127-133.

FGD1 encoding a guanine nucleotide exchange factor, specifically activates Rho GTPase cell division cycle 42 (Cdc42). Dysfunction of FGD1 causes Aarskog-Scott syndrome (MIM #305400), an X-linked disorder that may affect bone and intellectual development. However, the relationship between FGD1 and intellectual developmental disorders (IDD) remains unclear. The purpose of this study was to investigate the genetic association between the FGD1 polymorphism and IDD. Working with families from the Qinba mountain area where the occurrence of IDD is higher than the average in China, we analyzed 456 samples from 130 nuclear families, effectively controlling for stratification and environmental factors. Five SNP loci (rs2230265, rs7881608, rs2239809, rs6614244, and rs2284710) were selected that were well distributed within the FGD1 gene. Genotyping was performed through single-strand conformation polymorphism and restriction fragment length polymorphism. The data were analyzed with transmission disequilibrium tests. In the Qinba mountain area, no significant association was observed between IDD and allele or genotype frequencies, or the haplotype of the 5 SNP loci of the FGD1 gene. The results indicate that FGD1 may not be a monogenetic X-linked factor in IDD. Further studies are required to investigate its role in intellectual development based on its specific interactions with Cdc42 or other partner proteins contributing to IDD.

Lien vers le texte intégral (Open Access ou abonnement)

2. Martinez-Sanchis S, Bernal Santacreu MC, Cortes Sancho R, Gadea Domenech M. {{Language laterality, handedness and empathy in a sample of parents of children with autism spectrum disorder}}. {Psicothema};2014 (Feb);26(1):17-20.

Background: First-order relatives of persons with Autism Spectrum Disorder (ASD) exhibit a cognitive pattern which is part of a broader autism phenotype. Method: The purpose of the present study was to evaluate whether some neuropsychological features related to the autism phenotype are present in parents of ASD children. To this end, the exploration included a dichotic listening task, handedness and the Empathy Quotient (EQ-60). Results: The scores obtained by the total sample (fathers plus mothers) were similar to those of the general population, although there were differences in some parameters of the dichotic listening task depending on the gender. Contrary to expectations, only in fathers, the negative correlation between data from both ears was not statistically significant, which could be evidence of a lack of hemispheric interdependence. Conclusions: These results support the possible existence of a genetic susceptibility to an aberrant language asymmetry pattern. Moreover, possible unknown epigenetic factors could act on a vulnerable genotype in some ASD subjects. Nevertheless, due to the small sample size, the present research must be considered a pilot study.

Lien vers le texte intégral (Open Access ou abonnement)

3. Musser ED, Hawkey E, Kachan-Liu SS, Lees P, Roullet JB, Goddard K, Steiner RD, Nigg JT. {{Shared familial transmission of autism spectrum and attention-deficit/hyperactivity disorders}}. {J Child Psychol Psychiatry};2014 (Jan 21)
BACKGROUND: To determine whether familial transmission is shared between autism spectrum disorders and attention-deficit/hyperactivity disorder, we assessed the prevalence, rates of comorbidity, and familial transmission of both disorders in a large population-based sample of children during a recent 7 year period. METHODS: Study participants included all children born to parents with the Kaiser Permanente Northwest (KPNW) Health Plan between 1 January 1998 and 31 December 2004 (n = 35,073). Children and mothers with physician-identified autism spectrum disorders (ASD) and/or attention-deficit/hyperactivity disorder (ADHD) were identified via electronic medical records maintained for all KPNW members. RESULTS: Among children aged 6-12 years, prevalence was 2.0% for ADHD and 0.8% for ASD; within those groups, 0.2% of the full sample (19% of the ASD sample and 9.6% of the ADHD sample) had co-occurring ASD and ADHD, when all children were included. When mothers had a diagnosis of ADHD, first born offspring were at 6-fold risk of ADHD alone (OR = 5.02, p < .0001) and at 2.5-fold risk of ASD alone (OR = 2.52, p < .01). Results were not accounted for by maternal age, child gestational age, child gender, and child race. CONCLUSIONS: Autism spectrum disorders shares familial transmission with ADHD. ADHD and ASD have a partially overlapping diathesis.

Lien vers le texte intégral (Open Access ou abonnement)