Pubmed du 23/07/11

Pubmed du jour

2011-07-23 12:03:50

1. Gunn RK, Huentelman MJ, Brown RE. {{Are Sema5a mutant mice a good model of autism? A behavioral analysis of sensory systems, emotionality and cognition}}. {Behav Brain Res};2011 (Jul 12)

Semaphorin 5A (Sema5A) expression is reduced in the brain of individuals with autism, thus mice with reduced Sema5A levels may serve as a model of this neurodevelopmental disorder. We tested male and female Sema5a knockout mice (B6.129P2SEMA5A(<)(1DGEN>)/J) and C57BL/6J controls for emotionality, visual ability, prepulse inhibition, motor learning and cognition. Overall, there were only two genotype differences in emotionality: Sema5a mutant mice had more stretch-attend postures in the elevated plus-maze and more defecations in the open field. All mice could see, but Sema5a mice had better visual ability than C57BL/6J mice. There were no genotype differences in sensory-motor gating. Sema5a mice showed higher levels of activity in the elevated plus-maze and light/dark transition box, and there were sex by genotype differences in the Rotarod, suggesting a sex difference in balance and coordination differentially affected by Sema5a. There were no genotype effects on cognition: Sema5a mice did not differ from C57BL/6J in the Morris water maze, set-shifting or cued and contextual fear conditioning. In the social recognition test, all mice preferred social stimuli, but there was no preference for social novelty, thus the Sema5A mice do not have a deficit in social behavior. Overall, there were a number of sex differences, with females showing greater activity and males performing better in tests of spatial learning and memory, but no deficits in the behavior of Sema5A mice. We conclude that the Sema5a mice do not meet the behavioral criteria for a mouse model of autism.

Lien vers le texte intégral (Open Access ou abonnement)

2. Hunsaker MR, Greco CM, Spath MA, Smits AP, Navarro CS, Tassone F, Kros JM, Severijnen LA, Berry-Kravis EM, Berman RF, Hagerman PJ, Willemsen R, Hagerman RJ, Hukema RK. {{Widespread non-central nervous system organ pathology in fragile X premutation carriers with fragile X-associated tremor/ataxia syndrome and CGG knock-in mice}}. {Acta Neuropathol};2011 (Jul 23)

Fragile X-associated tremor/ataxia syndrome (FXTAS) is an adult-onset neurodegenerative disorder generally presenting with intention tremor and gait ataxia, but with a growing list of co-morbid medical conditions including hypothyroidism, hypertension, peripheral neuropathy, and cognitive decline. The pathological hallmark of FXTAS is the presence of intranuclear inclusions in both neurons and astroglia. However, it is unknown to what extent such inclusions are present outside the central nervous system (CNS). To address this issue, we surveyed non-CNS organs in ten human cases with FXTAS and in a CGG repeat knock-in (CGG KI) mouse model known to possess neuronal and astroglial inclusions. We find inclusions in multiple tissues from FXTAS cases and CGG KI mice, including pancreas, thyroid, adrenal gland, gastrointestinal, pituitary gland, pineal gland, heart, and mitral valve, as well as throughout the associated autonomic ganglia. Inclusions were observed in the testes, epididymis, and kidney of FXTAS cases, but were not observed in mice. These observations demonstrate extensive involvement of the peripheral nervous system and systemic organs. The finding of intranuclear inclusions in non-CNS somatic organ systems, throughout the PNS, and in the enteric nervous system of both FXTAS cases as well as CGG KI mice suggests that these tissues may serve as potential sites to evaluate early intervention strategies or be used as diagnostic factors.

Lien vers le texte intégral (Open Access ou abonnement)

3. Manera V, Del Giudice M, Grandi E, Colle L. {{Individual differences in the recognition of enjoyment smiles: no role for perceptual-attentional factors and autistic-like traits}}. {Front Psychol};2011;2:143.

Adults show remarkable individual variation in the ability to detect felt enjoyment in smiles based on the Duchenne marker (Action Unit 6). It has been hypothesized that perceptual and attentional factors (possibly correlated to autistic-like personality traits in the normative range) play a major role in determining individual differences in recognition performance. Here, this hypothesis was tested in a sample of 100 young adults. Eye-tracking methodology was employed to assess patterns of visual attention during a smile recognition task. Results indicate that neither perceptual-attentional factors nor autistic-like personality traits contribute appreciably to individual differences in smile recognition.

Lien vers le texte intégral (Open Access ou abonnement)

4. McPartland JC, Wu J, Bailey CA, Mayes LC, Schultz RT, Klin A. {{Atypical neural specialization for social percepts in autism spectrum disorder}}. {Soc Neurosci};2011 (Jul 22)

The social motivation hypothesis posits that aberrant neural response to human faces in autism is attributable to atypical social development and consequently reduced exposure to faces. The specificity of deficits in neural specialization remains unclear, and alternative theories suggest generalized processing difficulties. The current study contrasted neural specialization for social information versus nonsocial information in 36 individuals with autism and 18 typically developing individuals matched for age, race, sex, handedness, and cognitive ability. Event-related potentials elicited by faces, inverted faces, houses, letters, and pseudoletters were recorded. Groups were compared on an electrophysiological marker of neural specialization (N170), as well as behavioral performance on standardized measures of face recognition and word reading/decoding. Consistent with prior results, individuals with autism displayed slowed face processing and decreased sensitivity to face inversion; however, they showed comparable brain responses to letters, which were associated with behavioral performance in both groups. Results suggest that individuals with autism display atypical neural specialization for social information but intact specialization for nonsocial information. Findings concord with the notion of specific dysfunction in social brain systems rather than nonspecific information-processing difficulties in autism.

Lien vers le texte intégral (Open Access ou abonnement)