1. Gregory SG, Connelly JJ, Towers AJ, Johnson J, Biscocho D, Markunas CA, Lintas C, Abramson RK, Wright HH, Ellis P, Langford CF, Worley G, Delong GR, Murphy SK, Cuccaro ML, Persico A, Pericak-Vance MA. {{Genomic and epigenetic evidence for oxytocin receptor deficiency in autism}}. {BMC Med};2009 (Oct 22);7(1):62.
ABSTRACT: BACKGROUND: Autism comprises a spectrum of behavioral and cognitive disturbances of childhood development and is known to be highly heritable. Although numerous approaches have been used to identify genes implicated in the development of autism, less than 10% of autism cases have been attributed to single gene disorders. METHODS: We describe the use of high-resolution genome-wide tilepath microarrays and comparative genomic hybridization to identify copy number variants within 119 probands from multiplex autism families. We next carried out DNA methylation analysis by bisulfite sequencing in a proband and his family, expanding this analysis to methylation analysis of peripheral blood and temporal cortex DNA of autism cases and matched controls from independent datasets. We also assessed oxytocin receptor (OXTR) gene expression within the temporal cortex tissue by quantitative real-time polymerase chain reaction (PCR). RESULTS: Our analysis revealed a genomic deletion containing the oxytocin receptor gene, OXTR (MIM accession no.: 167055), previously implicated in autism, was present in an autism proband and his mother who exhibits symptoms of obsessive-compulsive disorder. The proband’s affected sibling did not harbor this deletion but instead may exhibit epigenetic misregulation of this gene through aberrant gene silencing by DNA methylation. Further DNA methylation analysis of the CpG island known to regulate OXTR expression identified several CpG dinucleotides that show independent statistically significant increases in the DNA methylation status in the peripheral blood cells and temporal cortex in independent datasets of individuals with autism as compared to control samples. Associated with the increase in methylation of these CpG dinucleotides is our finding that OXTR mRNA showed decreased expression in the temporal cortex tissue of autism cases matched for age and sex compared to controls. CONCLUSIONS: Together, these data provide further evidence for the role of OXTR and the oxytocin signaling pathway in the etiology of autism and, for the first time, implicate the epigenetic regulation of OXTR in the development of the disorder. See the related commentary by Gurrieri and Neri: http://www.biomedcentral.com/1741-7015/7/63.
2. Gurrieri F, Neri G. {{Defective oxytocin function: a clue to understanding the cause of autism?}} {BMC Med};2009 (Oct 22);7(1):63.
ABSTRACT: The autism spectrum disorders are a group of conditions with neurobehavioral impairment affecting approximately 0.6% of children. The clinical presentation is complex and the etiology is largely unknown, although a major role of genetic factors is widely accepted. A number of genetic studies led to the identification of genes and/or copy number variants whose alterations are associated with autism, but no specific factor has been found so far to be responsible for a substantial proportion of cases. Epigenetic modifications may also play a role, as demonstrated by the occurrence of autism in genetic conditions caused by mutations in imprinted genes or regions. The article by Gregory et al. published this month in BMC Medicine, reports on genomic and epigenetic alterations of OXTR, the gene encoding the receptor for oxytocin. The involvement of this gene was suggested by its deletion in an autistic patient. The subsequent analysis of a group of unrelated autistic subjects did not show an OXTR deletion, but rather hypermethylation of the gene promoter, with a reduced mRNA expression. These findings address two major points of the current debate on the etiology and pathogenesis of autism: the role of oxytocin, known to be involved in modeling human behavior, and the possible involvement of epigenetic mechanisms. The nature of this epigenetic dysregulation is unknown but, if proved to be true, might explain the failure to identify sequence alterations in a host of candidate genes. Practical implications of these findings may be forthcoming, however not before extension and validation on a larger scale have confirmed their value. See the associated research paper by Gregory et al: http://www.biomedcentral.com/1741-7015/7/62.
3. Roux JC, Villard L. {{Biogenic Amines in Rett Syndrome: The Usual Suspects}}. {Behav Genet};2009 (Oct 23)
Rett syndrome (RTT) is a severe postnatal neurological disorder caused by mutations in the methyl-CpG binding protein 2 (MECP2) gene. In affected children, most biological parameters, including brain structure, are normal (although acquired microcephaly is usually present). However, in recent years, a deficit in bioaminergic metabolism has been identified at the cellular and molecular levels, in more than 200 patients. Recently available transgenic mouse strains with a defective Mecp2 gene also show abnormalities, strongly suggesting that there is a direct link between the function of the MECP2 protein and the metabolism of biogenic amines. Biogenic amines appear to have an important role in the pathophysiology of Rett syndrome, for several reasons. Firstly, biogenic amines modulate a large number of autonomic and cognitive functions. Secondly, many of these functions are affected in RTT patients. Thirdly, biogenic amines are the only neurotransmitters that have repeatedly been found to be altered in RTT patients. Importantly, pharmacological interventions can be envisaged to try to counteract the deficits observed. Here, we review the available human and mouse data and present how they have been and could be used in the development of pharmacological treatments for children affected by the syndrome. Given our current knowledge and the tools available, modulating biogenic amine metabolism may prove to be the most promising strategy for improving the life quality of Rett syndrome patients in the short term.
4. Shih A, Rosanoff M, Wallace S, Dawson G. {{Autism Speaks Global Autism Public Health Initiative: Bridging gaps in autism awareness, research, and services around the world}}. {Beijing Da Xue Xue Bao};2009 (Aug 18);41(4):389-391.