Pubmed du 24/11/10

Pubmed du jour

2010-11-24 12:03:50

1. Burnette CP, Henderson HA, Inge AP, Zahka NE, Schwartz CB, Mundy PC. {{Anterior EEG Asymmetry and the Modifier Model of Autism}}. {J Autism Dev Disord};2010 (Nov 24)

Individual differences in the expression of autism complicate research on the nature and treatment of this disorder. In the Modifier Model of Autism (Mundy et al. 2007), we proposed that individual differences in autism may result not only from syndrome specific causal processes, but also from variability in generic, non-syndrome specific modifier processes that affect the social and emotional development of all people. One study supporting this model found that measures of resting anterior EEG asymmetry, a measure reflecting complex brain processes associated with generic individual differences in approach and avoidance motivation, may help explain differences in the expression of autism in children without intellectual disabilities (Sutton et al. 2005). In the current study, we partially replicated the observation that children with autism who exhibited a pattern of left frontal EEG asymmetry tended to display milder levels of social symptoms, although in the current sample this pattern applied only to HFA children with relatively lower verbal IQs. New observations indicated that left frontal EEG asymmetry was also associated with retrospective parent reports of significantly later age of onset of symptoms, but also higher levels of self-reported outward expressions of anger as well as symptoms of obsessive compulsive disorder in school-age higher functioning children with ASD. Therefore, the results of this study provide a new and fully independent set of observations, which indicate that individual differences in anterior EEG asymmetry may significantly moderate the expression and developmental course of autism. This observation may have clinical implications for identifying meaningful diagnostic sub-groups among children with autism.

2. Klintwall L, Holm A, Eriksson M, Carlsson LH, Olsson MB, Hedvall A, Gillberg C, Fernell E. {{Sensory abnormalities in autism A brief report}}. {Res Dev Disabil};2010 (Nov 24)

Sensory abnormalities were assessed in a population-based group of 208 20-54-month-old children, diagnosed with autism spectrum disorder (ASD) and referred to a specialized habilitation centre for early intervention. The children were subgrouped based upon degree of autistic symptoms and cognitive level by a research team at the centre. Parents were interviewed systematically about any abnormal sensory reactions in the child. In the whole group, pain and hearing were the most commonly affected modalities. Children in the most typical autism subgroup (nuclear autism with no learning disability) had the highest number of affected modalities. The children who were classified in an « autistic features » subgroup had the lowest number of affected modalities. There were no group differences in number of affected sensory modalities between groups of different cognitive levels or level of expressive speech. The findings provide support for the notion that sensory abnormality is very common in young children with autism. This symptom has been proposed for inclusion among the diagnostic criteria for ASD in the upcoming DSM-V.

3. Kron M, Muller M. {{Impaired hippocampal Ca2+ homeostasis and concomitant K+ channel dysfunction in a mouse model of Rett syndrome during anoxia}}. {Neuroscience};2010 (Nov 24);171(1):300-315.

Methyl-CpG-binding protein 2 (MeCP2) deficiency causes Rett syndrome (RTT), a neurodevelopmental disorder characterized by severe cognitive impairment, synaptic dysfunction, and hyperexcitability. Previously we reported that the hippocampus of MeCP2-deficient mice (Mecp2(-/y)), a mouse model for RTT, is more susceptible to hypoxia. To identify the underlying mechanisms we now focused on the anoxic responses of wildtype (WT) and Mecp2(-/y) CA1 neurons in acute hippocampal slices. Intracellular recordings revealed that Mecp2(-/y) neurons show only reduced or no hyperpolarizations early during cyanide-induced anoxia, suggesting potassium channel (K(+) channel) dysfunction. Blocking adenosine-5′-triphosphate-sensitive K(+) channels (K(ATP-)) and big-conductance Ca(2+)-activated K(+) channels (BK-channels) did not affect the early anoxic hyperpolarization in either genotype. However, blocking Ca(2+) release from the endoplasmic reticulum almost abolished the anoxic hyperpolarizations in Mecp2(-/y) neurons. Single-channel recordings confirmed that neither K(ATP)- nor BK-channels are the sole mediators of the early anoxic hyperpolarization. Instead, anoxia Ca(2+)-dependently activated various small/intermediate-conductance K(+) channels in WT neurons, which was less evident in Mecp2(-/y) neurons. Yet, pharmacologically increasing the Ca(2+) sensitivity of small/intermediate-conductance K(Ca) channels fully restored the anoxic hyperpolarization in Mecp2(-/y) neurons. Furthermore, Ca(2+) imaging unveiled lower intracellular Ca(2+) levels in resting Mecp2(-/y) neurons and reduced anoxic Ca(2+) transients with diminished Ca(2+) release from intracellular stores. In conclusion, the enhanced hypoxia susceptibility of Mecp2(-/y) hippocampus is primarily associated with disturbed Ca(2+) homeostasis and diminished Ca(2+) rises during anoxia. This secondarily attenuates the activation of K(Ca) channels and thereby increases the hypoxia susceptibility of Mecp2(-/y) neuronal networks. Since cytosolic Ca(2+) levels also determine neuronal excitability and synaptic plasticity, Ca(2+) homeostasis may constitute a promising target for pharmacotherapy in RTT.

4. Napolioni V, Lombardi F, Sacco R, Curatolo P, Manzi B, Alessandrelli R, Militerni R, Bravaccio C, Lenti C, Saccani M, Schneider C, Melmed R, Pascucci T, Puglisi-Allegra S, Reichelt KL, Rousseau F, Lewin P, Persico AM. {{Family-based association study of ITGB3 in autism spectrum disorder and its endophenotypes}}. {Eur J Hum Genet};2010 (Nov 24)

The integrin-beta 3 gene (ITGB3), located on human chromosome 17q21.3, was previously identified as a quantitative trait locus (QTL) for 5-HT blood levels and has been implicated as a candidate gene for autism spectrum disorder (ASD). We performed a family-based association study in 281 simplex and 12 multiplex Caucasian families. ITGB3 haplotypes are significantly associated with autism (HBAT, global P=0.038). Haplotype H3 is largely over-transmitted to the affected offspring and doubles the risk of an ASD diagnosis (HBAT P=0.005; odds ratio (OR)=2.000), at the expense of haplotype H1, which is under-transmitted (HBAT P=0.018; OR=0.725). These two common haplotypes differ only at rs12603582 located in intron 11, which reaches a P-value of 0.072 in single-marker FBAT analyses. Interestingly, rs12603582 is strongly associated with pre-term delivery in our ASD patients (P=0.008). On the other hand, it is SNP rs2317385, located at the 5′ end of the gene, that significantly affects 5-HT blood levels (Mann-Whitney U-test, P=0.001; multiple regression analysis, P=0.010). No gene-gene interaction between ITGB3 and SLC6A4 has been detected. In conclusion, we identify a significant association between a common ITGB3 haplotype and ASD. Distinct markers, located toward the 5′ and 3′ ends of the gene, seemingly modulate 5-HT blood levels and autism liability, respectively. Our results also raise interest into ITGB3 influences on feto-maternal immune interactions in autism.European Journal of Human Genetics advance online publication, 24 November 2010; doi:10.1038/ejhg.2010.180.