Pubmed du 28/02/22
1. Chatterjee S, Kar SK. COVID 19 in pregnancy and neurodevelopmental disorder: The four-fold levels of prevention. Asian journal of psychiatry. 2022; 70: 103046.
Lien vers le texte intégral (Open Access ou abonnement)
2. Krüttner S, Falasconi A, Valbuena S, Galimberti I, Bouwmeester T, Arber S, Caroni P. Absence of familiarity triggers hallmarks of autism in mouse model through aberrant tail-of-striatum and prelimbic cortex signaling. Neuron. 2022; 110(9): 1468-82.e5.
Autism spectrum disorder (ASD) involves genetic and environmental components. The underlying circuit mechanisms are unclear, but behaviorally, aversion toward unfamiliarity, a hallmark of autism, might be involved. Here, we show that in Shank3(ΔC/ΔC) ASD model mice, exposure to novel environments lacking familiar features produces long-lasting failure to engage and repetitive behaviors upon re-exposure. Inclusion of familiar features at first context exposure prevented enhanced dopamine transients in tail of striatum (TS) and restored context-specific control of engagement to wild-type levels in Shank3(ΔC/ΔC) mice. Engagement upon context re-exposure depended on the activity in prelimbic cortex (PreL)-to-TS projection neurons in wild-type mice and was restored in Shank3(ΔC/ΔC) mice by the chemogenetic activation of PreL→TS projection neurons. Environmental enrichment prevented ASD-like phenotypes by obviating the dependence on PreL→TS activity. Therefore, novel context experience has a key role in triggering ASD-like phenotypes in genetically predisposed mice, and behavioral therapies involving familiarity and enrichment might prevent the emergence of ASD phenotypes.
Lien vers le texte intégral (Open Access ou abonnement)
3. Nickel K, Perlov E, Reisert M, Runge K, Friedel E, Denzel D, Ebert D, Endres D, Domschke K, Tebartz van Elst L, Maier S. Altered transcallosal fiber count and volume in high-functioning adults with autism spectrum disorder. Psychiatry research Neuroimaging. 2022; 322: 111464.
An altered pattern of information processing has been hypothesized in autism spectrum disorder (ASD), characterized by enhanced local network connectivity and reduced long-distance communication. Previous findings of impaired white matter integrity in the genu and the body of the corpus callosum already indicated reduced long-distance connectivity in patients with ASD. However, it remained unclear how this reduced white matter integrity affects the structural connectivity of the corresponding brain areas. To this end, we analyzed magnetic resonance images (MRI) from 30 participants with high-functioning ASD and 30 typically developed individuals using a global tracking approach to estimate the fiber count and volume of the transcallosal fiber tracts of the five corpus callosum subsections. A reduced fiber count and fiber volume in the anterior subsection of the corpus callosum was detected, supporting the hypothesis of reduced long-distance connectivity in ASD.
Lien vers le texte intégral (Open Access ou abonnement)
4. Panahi Y, Salasar Moghaddam F, Babaei K, Eftekhar M, Shervin Badv R, Eskandari MR, Vafaee-Shahi M, Pezeshk H, Pedram M. Sexual Dimorphism in Telomere Length in Childhood Autism. Journal of autism and developmental disorders. 2022.
Autism spectrum disorders (ASD) are strikingly more prevalent in males, but the molecular mechanisms responsible for ASD sex-differential risk are poorly understood. Abnormally shorter telomeres have been associated with autism. Examination of relative telomere lengths (RTL) among non-syndromic male (N = 14) and female (N = 10) children with autism revealed that only autistic male children had significantly shorter RTL than typically-developing controls (N = 24) and paired siblings (N = 10). While average RTL of autistic girls did not differ significantly from controls, it was substantially longer than autistic boys. Our findings indicate a sexually-dimorphic pattern of RTL in childhood autism and could have important implications for RTL as a potential biomarker and the role/s of telomeres in the molecular mechanisms responsible for ASD sex-biased prevalence and etiology.
Lien vers le texte intégral (Open Access ou abonnement)
5. Parry S, Raheem A, Williams E, Rogers JP. Benzodiazepine Reduction and a Generalized Tonic-Clonic Seizure With Therapeutic Benefit in Catatonia Associated With Autism Spectrum Disorder. The journal of ECT. 2022.
Lien vers le texte intégral (Open Access ou abonnement)
6. Wang C, Horigane SI, Wakamori M, Ueda S, Kawabata T, Fujii H, Kushima I, Kimura H, Ishizuka K, Nakamura Y, Iwayama Y, Ikeda M, Iwata N, Okada T, Aleksic B, Mori D, Yoshida T, Bito H, Yoshikawa T, Takemoto-Kimura S, Ozaki N. Identification of ultra-rare disruptive variants in voltage-gated calcium channel-encoding genes in Japanese samples of schizophrenia and autism spectrum disorder. Translational psychiatry. 2022; 12(1): 84.
Several large-scale whole-exome sequencing studies in patients with schizophrenia (SCZ) and autism spectrum disorder (ASD) have identified rare variants with modest or strong effect size as genetic risk factors. Dysregulation of cellular calcium homeostasis might be involved in SCZ/ASD pathogenesis, and genes encoding L-type voltage-gated calcium channel (VGCC) subunits Ca(v)1.1 (CACNA1S), Ca(v)1.2 (CACNA1C), Ca(v)1.3 (CACNA1D), and T-type VGCC subunit Ca(v)3.3 (CACNA1I) recently were identified as risk loci for psychiatric disorders. We performed a screening study, using the Ion Torrent Personal Genome Machine (PGM), of exon regions of these four candidate genes (CACNA1C, CACNA1D, CACNA1S, CACNA1I) in 370 Japanese patients with SCZ and 192 with ASD. Variant filtering was applied to identify biologically relevant mutations that were not registered in the dbSNP database or that have a minor allele frequency of less than 1% in East-Asian samples from databases; and are potentially disruptive, including nonsense, frameshift, canonical splicing site single nucleotide variants (SNVs), and non-synonymous SNVs predicted as damaging by five different in silico analyses. Each of these filtered mutations were confirmed by Sanger sequencing. If parental samples were available, segregation analysis was employed for measuring the inheritance pattern. Using our filter, we discovered one nonsense SNV (p.C1451* in CACNA1D), one de novo SNV (p.A36V in CACNA1C), one rare short deletion (p.E1675del in CACNA1D), and 14 NSstrict SNVs (non-synonymous SNV predicted as damaging by all of five in silico analyses). Neither p.A36V in CACNA1C nor p.C1451* in CACNA1D were found in 1871 SCZ cases, 380 ASD cases, or 1916 healthy controls in the independent sample set, suggesting that these SNVs might be ultra-rare SNVs in the Japanese population. The neuronal splicing isoform of Ca(v)1.2 with the p.A36V mutation, discovered in the present study, showed reduced Ca(2+)-dependent inhibition, resulting in excessive Ca(2+) entry through the mutant channel. These results suggested that this de novo SNV in CACNA1C might predispose to SCZ by affecting Ca(2+) homeostasis. Thus, our analysis successfully identified several ultra-rare and potentially disruptive gene variants, lending partial support to the hypothesis that VGCC-encoding genes may contribute to the risk of SCZ/ASD.
Lien vers le texte intégral (Open Access ou abonnement)
7. Zeng J, Liang Y, Sun R, Huang S, Wang Z, Xiao L, Lu J, Yu H, Yao P. Hematopoietic stem cell transplantation ameliorates maternal diabetes-mediated gastrointestinal symptoms and autism-like behavior in mouse offspring. Annals of the New York Academy of Sciences. 2022.
Epidemiological studies have shown that maternal diabetes is associated with autism spectrum disorder development, although the detailed mechanism remains unclear. We have previously found that maternal diabetes induces persistent epigenetic changes and gene suppression in neurons, subsequently triggering autism-like behavior (ALB). In this study, we investigated the potential role and effect of hematopoietic stem cells (HSCs) on maternal diabetes-mediated gastrointestinal (GI) dysfunction and ALB in a mouse model. We show in vitro that transient hyperglycemia induced persistent epigenetic changes and gene suppression of tight junction proteins. In vivo, maternal diabetes-mediated oxidative stress induced gene suppression and inflammation in both peripheral blood mononuclear cells and intestine epithelial cells, subsequently triggering GI dysfunction with increased intestinal permeability and altered microbiota compositions, as well as suppressed gene expression in neurons and subsequent ALB in offspring; HSC transplantation (HSCT) ameliorates this effect by systematically reversing maternal diabetes-mediated oxidative stress. We conclude that HSCT can ameliorate maternal diabetes-mediated GI symptoms and autism-like behavior in mouse offspring.