1. Katz DM, Dutschmann M, Ramirez JM, Hilaire G. {{Breathing disorders in Rett syndrome: progressive neurochemical dysfunction in the respiratory network after birth}}. {Respir Physiol Neurobiol};2009 (Aug 31);168(1-2):101-108.
Disorders of respiratory control are a prominent feature of Rett syndrome (RTT), a severely debilitating condition caused by mutations in the gene encoding methyl-CpG-binding protein 2 (MECP2). RTT patients present with a complex respiratory phenotype that can include periods of hyperventilation, apnea, breath holds terminated by Valsalva maneuvers, forced and deep breathing and apneustic breathing, as well as abnormalities of heart rate control and cardiorespiratory integration. Recent studies of mouse models of RTT have begun to shed light on neurologic deficits that likely contribute to respiratory dysfunction including, in particular, defects in neurochemical signaling resulting from abnormal patterns of neurotransmitter and neuromodulator expression. The authors hypothesize that breathing dysregulation in RTT results from disturbances in mechanisms that modulate the respiratory rhythm, acting either alone or in combination with more subtle disturbances in rhythm and pattern generation. This article reviews the evidence underlying this hypothesis as well as recent efforts to translate our emerging understanding of neurochemical defects in mouse models of RTT into preclinical trials of potential treatments for respiratory dysfunction in this disease.
2. Voituron N, Zanella S, Menuet C, Dutschmann M, Hilaire G. {{Early breathing defects after moderate hypoxia or hypercapnia in a mouse model of Rett syndrome}}. {Respir Physiol Neurobiol};2009 (Aug 31);168(1-2):109-118.
Rett syndrome (RTT) is a rare neurodevelopmental disease caused by mutations in the transcriptional repressor methyl-CpG-binding protein 2 (MeCP2) and accompanied by complex symptoms, including erratic breathing and life-threatening apnoeas. In Mecp2-deficient male mice (Mecp2(-/y)), breathing is normal at birth but becomes altered after postnatal day 30 (P30), with erratic rhythm and apnoeas aggravating until death at around P60. Using plethysmography, we analyzed breathing of unrestrained wild type mice and Mecp2(-/y) at P15, P25 and P30 under air and under short-lasting exposure to moderate hypoxia or hypercapnia. In Mecp2(-/y) with normal resting ventilation, we report exacerbated respiratory responses to hypoxia at P30 and transient apnoeas with erratic rhythm after hypoxia and hypercapnia at P30, P25 and occasionally P15. Then environmental factors may induce breathing defects well before than expected in Mecp2(-/y) and possibly in RTT patients. We therefore suggest avoiding exposure of young RTT patients to environmental situations where they may encounter moderate hypoxia or hypercapnia.