Pubmed du 5/04/09

Pubmed du jour

2009-04-05 12:03:50

1. Gauthier J, Spiegelman D, Piton A, Lafreniere RG, Laurent S, St-Onge J, Lapointe L, Hamdan FF, Cossette P, Mottron L, Fombonne E, Joober R, Marineau C, Drapeau P, Rouleau GA. {{Novel de novo SHANK3 mutation in autistic patients}}. {Am J Med Genet B Neuropsychiatr Genet};2009 (Apr 5);150B(3):421-424.

A number of studies have confirmed that genetic factors play an important role in autism spectrum disorder (ASD). More recently de novo mutations in the SHANK3 gene, a synaptic scaffolding protein, have been associated with the ASD phenotype. As part of our gene discovery strategy, we sequenced the SHANK3 gene in a cohort of 427 ASD subjects and 190 controls. Here, we report the identification of two putative causative mutations: one being a de novo deletion at an intronic donor splice site and one missense transmitted from an epileptic father. We were able to confirm the deleterious effect of the splice site deletion by RT-PCR using mRNA extracted from cultured lymphoblastoid cells. The missense mutation, a leucine to proline at amino acid position 68, is perfectly conserved across all species examined, and would be predicted to disrupt an alpha-helical domain. These results further support the role of SHANK3 gene disruption in the etiology of ASD.

2. Virkud YV, Todd RD, Abbacchi AM, Zhang Y, Constantino JN. {{Familial aggregation of quantitative autistic traits in multiplex versus simplex autism}}. {Am J Med Genet B Neuropsychiatr Genet};2009 (Apr 5);150B(3):328-334.

Recent research has suggested that the mode of inheritance for simplex autism (SA, one individual in the family affected) may be distinct from that for multiplex autism (MA, two or more individuals affected). Since sub clinical autistic traits have been observed in « unaffected » relatives of children with autism, we explored whether the distributions of such traits in families supported differential modes of genetic transmission for SA and MA autism. We measured patterns of familial aggregation of quantitative autistic traits (QAT) in children and parents in 80 SA families and 210 MA families, using the Social Responsiveness Scale. When considering all SA and MA siblings who scored below a uniform quantitative (clinical-level) severity threshold, MA brothers exhibited a distinct pathological shift in the distribution, compared to SA brothers (P < 0.0001). Such aggregation of QAT was also observed in fathers but not among females in MA families. Significant spousal correlations for QAT-suggestive of assortative mating-were observed in both SA and MA families, but neither group was characterized by a greater-than-chance level of concordant elevation among spousal pairs in this volunteer sample. Among male first degree relatives, there exist distinct patterns of QAT manifestation for simplex versus multiplex autism. These findings are consistent with the results of molecular genetic studies that have suggested differential modes of intergenerational transmission for SA and MA. Characterization of QAT and other endophenotypes among close relatives may be useful for reducing sample heterogeneity in future genetic and neurobiologic studies of autism.