Pubmed du 31/07/22
1. Bast N, Gaigg SB, Bowler DM, Roessner V, Freitag CM, Ring M. Arousal-modulated memory encoding and retrieval in adults with autism spectrum disorder. Autism Res;2022 (Jul 30)
Recently, we have shown that pupil dilation during a recognition memory task can serve as an index of memory retrieval difficulties in autism. At the time of publication, we were unaware of specific data-analysis methods that can be used to shed further light on the origins of such memory related pupil dilation. Specifically, by distinguishing « tonic » from « phasic » changes in pupil dilation and considering their temporal progression, it is possible to draw inferences about the functional integrity of a locus coeruleus-norepinephrine system (LC-NE) that is known to play a key role in regulating memory encoding and retrieval processes. We therefore apply these analyses to our previously published eye-tracking data of adults with ASD (N = 24) and neurotypical development (TD, N = 30) during the recognition memory task. In this re-analysis, we related pupil dilation during encoding and retrieval to recognition accuracy in a per-trial analysis of linear mixed models. In ASD, we replicated attenuated recognition accuracy, which was accompanied by attenuated pupil dilation during encoding and retrieval. Group differences in pupil dilation during retrieval occurred late during the trial (after 1.75 s) and indicated an altered top-down processing like attenuated attribution of semantic salience in response to previously encoded stimuli. In addition, only in the ASD group were higher pupil dilation during encoding and lower pupil dilation during retrieval associated with decreased recognition accuracy. This supports altered modulation of memory encoding and retrieval in ASD, with LC-NE phasic activity as promising underlying mechanism. LAY SUMMARY: We investigated the changes of pupil size during memory testing in autism spectrum disorder. Adults with ASD remembered fewer items correctly than neurotypical individuals (TD). This reduced memory was related to increased pupillary responses at study and decreased pupil dilation at test only for adults with ASD indicating a different modulation of memory by the locus coeruleus.
Lien vers le texte intégral (Open Access ou abonnement)
2. Cai Y, Zhao J, Wang L, Xie Y, Fan X. Altered topological properties of white matter structural network in adults with autism spectrum disorder. Asian J Psychiatr;2022 (Jul 16);75:103211.
BACKGROUND: Autism spectrum disorder (ASD) is a complex developmental disability and is currently viewed as a disorder of brain connectivity in which white matter abnormalities. However, the majority of the research to date has focused on children with ASD. Understanding the topological organization of the white matter structural network in adults may help uncover the nature of ASD pathology in adulthood. METHOD: This study investigated the topological properties of white matter structural network using diffusion tensor imaging and graph theory analysis in a sample of 32 adults with ASD compared to 35 matched typically developing (TD) controls. Group differences in global and nodal topological metrics were compared. The relationships between the altered network metrics and the severity of clinical symptoms were calculated. RESULTS: Compared to TD controls, ASD patients exhibited decreased small-worldness and increased global efficiency. In addition, the reduced nodal efficiency and increased nodal degree were found in the frontal (e.g., the inferior frontal gyrus) and parietal (e.g., postcentral gyrus) regions. Furthermore, the altered topological metrics (e.g., increased global efficiency and reduced nodal efficiency) were correlated with the severity of ASD symptoms. CONCLUSION: These results indicated that the complicatedly topological organization of the white matter structural network was abnormal and may play an essential role in the underlying pathological mechanism of ASD in adults.
Lien vers le texte intégral (Open Access ou abonnement)
3. Fujishiro S, Tsuji S, Akagawa S, Akagawa Y, Yamanouchi S, Ishizaki Y, Hashiyada M, Akane A, Kaneko K. Dysbiosis in Gut Microbiota in Children Born Preterm Who Developed Autism Spectrum Disorder: A Pilot Study. J Autism Dev Disord;2022 (Jul 31)
The gut microbiota was reported to differ between children with autism spectrum disorder (ASD) and typically developing (TD) children, and dysbiosis of the gut microbiota in preterm infants is common. Here, we explored the characteristics of gut microbiota in children born preterm with ASD. We performed 16S rRNA gene sequencing using stool samples from ASD children born preterm and TD children born preterm. Alpha diversity was significantly greater in the ASD group. A comparison of beta diversity showed different clusters. Linear discriminant analysis effect size analysis revealed significantly more Firmicutes in the ASD group compared with the TD group. In conclusion, the gut microbiota in children born preterm differs between children with ASD and TD.