
- <Centre d'Information et de documentation du CRA Rhône-Alpes
- CRA
- Informations pratiques
-
Adresse
Centre d'information et de documentation
Horaires
du CRA Rhône-Alpes
Centre Hospitalier le Vinatier
bât 211
95, Bd Pinel
69678 Bron CedexLundi au Vendredi
Contact
9h00-12h00 13h30-16h00Tél: +33(0)4 37 91 54 65
Mail
Fax: +33(0)4 37 91 54 37
-
Adresse
Auteur Walker S. MCKINNEY
|
|
Documents disponibles écrits par cet auteur (3)
Faire une suggestion Affiner la rechercheInitial action output and feedback-guided motor behaviors in autism spectrum disorder / Kathryn E. UNRUH in Molecular Autism, 12 (2021)
![]()
[article]
Titre : Initial action output and feedback-guided motor behaviors in autism spectrum disorder Type de document : texte imprimé Auteurs : Kathryn E. UNRUH, Auteur ; Walker S. MCKINNEY, Auteur ; Erin K. BOJANEK, Auteur ; Kandace K. FLEMING, Auteur ; John A. SWEENEY, Auteur ; Matthew W. MOSCONI, Auteur Article en page(s) : 52 p. Langues : Anglais (eng) Mots-clés : Autism spectrum disorder (ASD) Eye movement Lateralization Precision grip Sensorimotor Index. décimale : PER Périodiques Résumé : BACKGROUND: Sensorimotor issues are common in autism spectrum disorder (ASD), related to core symptoms, and predictive of worse functional outcomes. Deficits in rapid behaviors supported primarily by feedforward mechanisms, and continuous, feedback-guided motor behaviors each have been reported, but the degrees to which they are distinct or co-segregate within individuals and across development are not well understood. METHODS: We characterized behaviors that varied in their involvement of feedforward control relative to feedback control across skeletomotor (precision grip force) and oculomotor (saccades) control systems in 109 individuals with ASD and 101 age-matched typically developing controls (range: 5-29 years) including 58 individuals with ASD and 57 controls who completed both grip and saccade tests. Grip force was examined across multiple force (15, 45, and 85% MVC) and visual gain levels (low, medium, high). Maximum grip force also was examined. During grip force tests, reaction time, initial force output accuracy, variability, and entropy were examined. For the saccade test, latency, accuracy, and trial-wise variability of latency and accuracy were examined. RESULTS: Relative to controls, individuals with ASD showed similar accuracy of initial grip force but reduced accuracy of saccadic eye movements specific to older ages of our sample. Force variability was greater in ASD relative to controls, but saccade gain variability (across trials) was not different between groups. Force entropy was reduced in ASD, especially at older ages. We also find reduced grip strength in ASD that was more severe in dominant compared to non-dominant hands. LIMITATIONS: Our age-related findings rely on cross-sectional data. Longitudinal studies of sensorimotor behaviors and their associations with ASD symptoms are needed. CONCLUSIONS: We identify reduced accuracy of initial motor output in ASD that was specific to the oculomotor system implicating deficient feedforward control that may be mitigated during slower occurring behaviors executed in the periphery. Individuals with ASD showed increased continuous force variability but similar levels of trial-to-trial saccade accuracy variability suggesting that feedback-guided refinement of motor commands is deficient specifically when adjustments occur rapidly during continuous behavior. We also document reduced lateralization of grip strength in ASD implicating atypical hemispheric specialization. En ligne : http://dx.doi.org/10.1186/s13229-021-00452-8 Permalink : https://www.cra-rhone-alpes.org/cid/opac_css/index.php?lvl=notice_display&id=459
in Molecular Autism > 12 (2021) . - 52 p.[article] Initial action output and feedback-guided motor behaviors in autism spectrum disorder [texte imprimé] / Kathryn E. UNRUH, Auteur ; Walker S. MCKINNEY, Auteur ; Erin K. BOJANEK, Auteur ; Kandace K. FLEMING, Auteur ; John A. SWEENEY, Auteur ; Matthew W. MOSCONI, Auteur . - 52 p.
Langues : Anglais (eng)
in Molecular Autism > 12 (2021) . - 52 p.
Mots-clés : Autism spectrum disorder (ASD) Eye movement Lateralization Precision grip Sensorimotor Index. décimale : PER Périodiques Résumé : BACKGROUND: Sensorimotor issues are common in autism spectrum disorder (ASD), related to core symptoms, and predictive of worse functional outcomes. Deficits in rapid behaviors supported primarily by feedforward mechanisms, and continuous, feedback-guided motor behaviors each have been reported, but the degrees to which they are distinct or co-segregate within individuals and across development are not well understood. METHODS: We characterized behaviors that varied in their involvement of feedforward control relative to feedback control across skeletomotor (precision grip force) and oculomotor (saccades) control systems in 109 individuals with ASD and 101 age-matched typically developing controls (range: 5-29 years) including 58 individuals with ASD and 57 controls who completed both grip and saccade tests. Grip force was examined across multiple force (15, 45, and 85% MVC) and visual gain levels (low, medium, high). Maximum grip force also was examined. During grip force tests, reaction time, initial force output accuracy, variability, and entropy were examined. For the saccade test, latency, accuracy, and trial-wise variability of latency and accuracy were examined. RESULTS: Relative to controls, individuals with ASD showed similar accuracy of initial grip force but reduced accuracy of saccadic eye movements specific to older ages of our sample. Force variability was greater in ASD relative to controls, but saccade gain variability (across trials) was not different between groups. Force entropy was reduced in ASD, especially at older ages. We also find reduced grip strength in ASD that was more severe in dominant compared to non-dominant hands. LIMITATIONS: Our age-related findings rely on cross-sectional data. Longitudinal studies of sensorimotor behaviors and their associations with ASD symptoms are needed. CONCLUSIONS: We identify reduced accuracy of initial motor output in ASD that was specific to the oculomotor system implicating deficient feedforward control that may be mitigated during slower occurring behaviors executed in the periphery. Individuals with ASD showed increased continuous force variability but similar levels of trial-to-trial saccade accuracy variability suggesting that feedback-guided refinement of motor commands is deficient specifically when adjustments occur rapidly during continuous behavior. We also document reduced lateralization of grip strength in ASD implicating atypical hemispheric specialization. En ligne : http://dx.doi.org/10.1186/s13229-021-00452-8 Permalink : https://www.cra-rhone-alpes.org/cid/opac_css/index.php?lvl=notice_display&id=459 Links between looking and speaking in autism and first-degree relatives: insights into the expression of genetic liability to autism / Kritika NAYAR in Molecular Autism, 9 (2018)
![]()
[article]
Titre : Links between looking and speaking in autism and first-degree relatives: insights into the expression of genetic liability to autism Type de document : texte imprimé Auteurs : Kritika NAYAR, Auteur ; Peter C. GORDON, Auteur ; Gary E. MARTIN, Auteur ; Abigail L. HOGAN-BROWN, Auteur ; Chelsea LA VALLE, Auteur ; Walker S. MCKINNEY, Auteur ; Michelle LEE, Auteur ; Elizabeth S. NORTON, Auteur ; Molly LOSH, Auteur Article en page(s) : 51p. Langues : Anglais (eng) Mots-clés : Autism spectrum disorder Broad autism phenotype Endophenotype Eye movement Eye-voice span Gaze Language Rapid automatized naming Restricted and repetitive behaviors Social communication standards of the institutional research committee and with the 1964 Helsinki Declaration and its later amendments or comparable ethical standards. Informed consent was obtained from all individual participants included in the study.Not applicableThe authors declare that they have no competing interests.Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations. Index. décimale : PER Périodiques Résumé : Background: Rapid automatized naming (RAN; naming of familiar items presented in an array) is a task that taps fundamental neurocognitive processes that are affected in a number of complex psychiatric conditions. Deficits in RAN have been repeatedly observed in autism spectrum disorder (ASD), and also among first-degree relatives, suggesting that RAN may tap features that index genetic liability to ASD. This study used eye tracking to examine neurocognitive mechanisms related to RAN performance in ASD and first-degree relatives, and investigated links to broader language and clinical-behavioral features. Methods: Fifty-one individuals with ASD, biological parents of individuals with ASD (n = 133), and respective control groups (n = 45 ASD controls; 58 parent controls) completed RAN on an eye tracker. Variables included naming time, frequency of errors, and measures of eye movement during RAN (eye-voice span, number of fixations and refixations). Results: Both the ASD and parent-ASD groups showed slower naming times, more errors, and atypical eye-movement patterns (e.g., increased fixations and refixations), relative to controls, with differences persisting after accounting for spousal resemblance. RAN ability and associated eye movement patterns were correlated with increased social-communicative impairment and increased repetitive behaviors in ASD. Longer RAN times and greater refixations in the parent-ASD group were driven by the subgroup who showed clinical-behavioral features of the broad autism phenotype (BAP). Finally, parent-child dyad correlations revealed associations between naming time and refixations in parents with the BAP and increased repetitive behaviors in their child with ASD. Conclusions: Differences in RAN performance and associated eye movement patterns detected in ASD and in parents, and links to broader social-communicative abilities, clinical features, and parent-child associations, suggest that RAN-related abilities might constitute genetically meaningful neurocognitive markers that can help bridge connections between underlying biology and ASD symptomatology. En ligne : https://dx.doi.org/10.1186/s13229-018-0233-5 Permalink : https://www.cra-rhone-alpes.org/cid/opac_css/index.php?lvl=notice_display&id=371
in Molecular Autism > 9 (2018) . - 51p.[article] Links between looking and speaking in autism and first-degree relatives: insights into the expression of genetic liability to autism [texte imprimé] / Kritika NAYAR, Auteur ; Peter C. GORDON, Auteur ; Gary E. MARTIN, Auteur ; Abigail L. HOGAN-BROWN, Auteur ; Chelsea LA VALLE, Auteur ; Walker S. MCKINNEY, Auteur ; Michelle LEE, Auteur ; Elizabeth S. NORTON, Auteur ; Molly LOSH, Auteur . - 51p.
Langues : Anglais (eng)
in Molecular Autism > 9 (2018) . - 51p.
Mots-clés : Autism spectrum disorder Broad autism phenotype Endophenotype Eye movement Eye-voice span Gaze Language Rapid automatized naming Restricted and repetitive behaviors Social communication standards of the institutional research committee and with the 1964 Helsinki Declaration and its later amendments or comparable ethical standards. Informed consent was obtained from all individual participants included in the study.Not applicableThe authors declare that they have no competing interests.Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations. Index. décimale : PER Périodiques Résumé : Background: Rapid automatized naming (RAN; naming of familiar items presented in an array) is a task that taps fundamental neurocognitive processes that are affected in a number of complex psychiatric conditions. Deficits in RAN have been repeatedly observed in autism spectrum disorder (ASD), and also among first-degree relatives, suggesting that RAN may tap features that index genetic liability to ASD. This study used eye tracking to examine neurocognitive mechanisms related to RAN performance in ASD and first-degree relatives, and investigated links to broader language and clinical-behavioral features. Methods: Fifty-one individuals with ASD, biological parents of individuals with ASD (n = 133), and respective control groups (n = 45 ASD controls; 58 parent controls) completed RAN on an eye tracker. Variables included naming time, frequency of errors, and measures of eye movement during RAN (eye-voice span, number of fixations and refixations). Results: Both the ASD and parent-ASD groups showed slower naming times, more errors, and atypical eye-movement patterns (e.g., increased fixations and refixations), relative to controls, with differences persisting after accounting for spousal resemblance. RAN ability and associated eye movement patterns were correlated with increased social-communicative impairment and increased repetitive behaviors in ASD. Longer RAN times and greater refixations in the parent-ASD group were driven by the subgroup who showed clinical-behavioral features of the broad autism phenotype (BAP). Finally, parent-child dyad correlations revealed associations between naming time and refixations in parents with the BAP and increased repetitive behaviors in their child with ASD. Conclusions: Differences in RAN performance and associated eye movement patterns detected in ASD and in parents, and links to broader social-communicative abilities, clinical features, and parent-child associations, suggest that RAN-related abilities might constitute genetically meaningful neurocognitive markers that can help bridge connections between underlying biology and ASD symptomatology. En ligne : https://dx.doi.org/10.1186/s13229-018-0233-5 Permalink : https://www.cra-rhone-alpes.org/cid/opac_css/index.php?lvl=notice_display&id=371 Subcortical brain volume variations in autistic individuals across the lifespan / Danielle CHRISTENSEN in Molecular Autism, 16 (2025)
![]()
[article]
Titre : Subcortical brain volume variations in autistic individuals across the lifespan Type de document : texte imprimé Auteurs : Danielle CHRISTENSEN, Auteur ; Young Seon SHIN, Auteur ; Jingying WANG, Auteur ; Carolina R. CUOMO, Auteur ; Tyler DENTRY, Auteur ; Hanna M. GEMMELL, Auteur ; Stormi L. PULVER, Auteur ; Ann-Marie ORLANDO, Auteur ; Walker S. MCKINNEY, Auteur ; Cassie J. STEVENS, Auteur ; Kathryn E. UNRUH, Auteur ; Bikram KARMAKAR, Auteur ; Stephen A. COOMBES, Auteur ; Matthew W. MOSCONI, Auteur ; Zheng WANG, Auteur ; Danielle CHRISTENSEN, Auteur ; Young Seon SHIN, Auteur ; Jingying WANG, Auteur ; Carolina R. CUOMO, Auteur ; Tyler DENTRY, Auteur ; Hanna M. GEMMELL, Auteur ; Stormi L. PULVER, Auteur ; Ann-Marie ORLANDO, Auteur ; Walker S. MCKINNEY, Auteur ; Cassie J. STEVENS, Auteur ; Kathryn E. UNRUH, Auteur ; Bikram KARMAKAR, Auteur ; Stephen A. COOMBES, Auteur ; Matthew W. MOSCONI, Auteur ; Zheng WANG, Auteur Article en page(s) : 46 Langues : Anglais (eng) Mots-clés : Humans Adult Male Female Child Middle Aged Adolescent Magnetic Resonance Imaging Aged Young Adult Cross-Sectional Studies Brain/pathology/diagnostic imaging Autistic Disorder/pathology/diagnostic imaging Organ Size Amygdala/pathology/diagnostic imaging Longevity Autism Spectrum Disorder/pathology/diagnostic imaging Hippocampus/pathology/diagnostic imaging Basal Ganglia/pathology/diagnostic imaging Aging Amygdala Autism spectrum disorder Basal ganglia Brain atrophy Cerebral ventricles Hippocampus Lifespan MRI Institutional Review Boards (IRB) at UTSW and Children’s Hospital of Dallas (STU052013-4 approval date: August 30, 2011), KU Medical Center (STUDY00140269 approval date: March 17, 2017), and UF (IRB201801378 approval date: July 26, 2022). Consent for publication: All participants provided their informed consent regarding data handling procedures. Competing interests: The authors declare no competing interests. Index. décimale : PER Périodiques Résumé : BACKGROUND: Structural alterations in subcortical brain regions-including the amygdala, hippocampus, basal ganglia, and cerebral ventricles-have been linked to various clinical features of autism spectrum disorder (ASD). However, volumetric features among these regions in autistic individuals across the lifespan remain poorly understood. This cross-sectional study aimed to investigate age-associated volumetric deviations in these clinically implicated subcortical regions of autistic individuals and neurotypical controls, and to examine the structural interrelationships within each group. METHODS: We examined multi-site T1-weighted MRI data from 119 autistic and 122 neurotypical participants aged 7-73 years. Volumetric data for the amygdala, hippocampus, basal ganglia, and cerebral ventricles were harmonized across sites using the ComBat algorithm. Following this, volumetric composite indices (principal component scores) were extracted for each region using principal component analysis. These scores represent dominant volumetric patterns of each subcortical region, with higher values reflecting greater volume. These composite scores were then compared between groups and with increasing age. RESULTS: Autistic participants exhibited greater amygdala volume in early life, followed by more pronounced age-associated reductions in adulthood compared to neurotypical controls. A similar trend was observed for the hippocampus, with early volumetric enlargement giving way to steeper declines in later years. In contrast, the autistic group consistently trended towards larger basal ganglia across the lifespan. Additionally, autistic participants showed accelerated enlargement in the cerebral ventricles with increasing age. Both groups exhibited patterns of inverse volumetric associations between the cerebral ventricles and surrounding subcortical regions in later adulthood; however, these relationships were more pronounced and widely distributed in the autistic group. LIMITATIONS: The cross-sectional design of this study limited us from capturing intra-individual differences at baseline and quantifying the lifespan trajectories of each participant. Site-related sampling differences may have introduced cohort bias in the results. CONCLUSIONS: Autistic participants and neurotypical controls exhibit distinct, age-related volumetric patterns across key subcortical brain regions. Enlargement of the cerebral ventricles and their inverse structural relationships with neighboring structures in later life may indicate atrophic processes beginning in middle adulthood in ASD. These findings highlight the need to further investigate mechanisms of atypical brain aging in ASD and consider these subcortical brain regions as potential biomarkers of neurodegeneration and intervention targets across the adult lifespan. En ligne : https://dx.doi.org/10.1186/s13229-025-00673-1 Permalink : https://www.cra-rhone-alpes.org/cid/opac_css/index.php?lvl=notice_display&id=569
in Molecular Autism > 16 (2025) . - 46[article] Subcortical brain volume variations in autistic individuals across the lifespan [texte imprimé] / Danielle CHRISTENSEN, Auteur ; Young Seon SHIN, Auteur ; Jingying WANG, Auteur ; Carolina R. CUOMO, Auteur ; Tyler DENTRY, Auteur ; Hanna M. GEMMELL, Auteur ; Stormi L. PULVER, Auteur ; Ann-Marie ORLANDO, Auteur ; Walker S. MCKINNEY, Auteur ; Cassie J. STEVENS, Auteur ; Kathryn E. UNRUH, Auteur ; Bikram KARMAKAR, Auteur ; Stephen A. COOMBES, Auteur ; Matthew W. MOSCONI, Auteur ; Zheng WANG, Auteur ; Danielle CHRISTENSEN, Auteur ; Young Seon SHIN, Auteur ; Jingying WANG, Auteur ; Carolina R. CUOMO, Auteur ; Tyler DENTRY, Auteur ; Hanna M. GEMMELL, Auteur ; Stormi L. PULVER, Auteur ; Ann-Marie ORLANDO, Auteur ; Walker S. MCKINNEY, Auteur ; Cassie J. STEVENS, Auteur ; Kathryn E. UNRUH, Auteur ; Bikram KARMAKAR, Auteur ; Stephen A. COOMBES, Auteur ; Matthew W. MOSCONI, Auteur ; Zheng WANG, Auteur . - 46.
Langues : Anglais (eng)
in Molecular Autism > 16 (2025) . - 46
Mots-clés : Humans Adult Male Female Child Middle Aged Adolescent Magnetic Resonance Imaging Aged Young Adult Cross-Sectional Studies Brain/pathology/diagnostic imaging Autistic Disorder/pathology/diagnostic imaging Organ Size Amygdala/pathology/diagnostic imaging Longevity Autism Spectrum Disorder/pathology/diagnostic imaging Hippocampus/pathology/diagnostic imaging Basal Ganglia/pathology/diagnostic imaging Aging Amygdala Autism spectrum disorder Basal ganglia Brain atrophy Cerebral ventricles Hippocampus Lifespan MRI Institutional Review Boards (IRB) at UTSW and Children’s Hospital of Dallas (STU052013-4 approval date: August 30, 2011), KU Medical Center (STUDY00140269 approval date: March 17, 2017), and UF (IRB201801378 approval date: July 26, 2022). Consent for publication: All participants provided their informed consent regarding data handling procedures. Competing interests: The authors declare no competing interests. Index. décimale : PER Périodiques Résumé : BACKGROUND: Structural alterations in subcortical brain regions-including the amygdala, hippocampus, basal ganglia, and cerebral ventricles-have been linked to various clinical features of autism spectrum disorder (ASD). However, volumetric features among these regions in autistic individuals across the lifespan remain poorly understood. This cross-sectional study aimed to investigate age-associated volumetric deviations in these clinically implicated subcortical regions of autistic individuals and neurotypical controls, and to examine the structural interrelationships within each group. METHODS: We examined multi-site T1-weighted MRI data from 119 autistic and 122 neurotypical participants aged 7-73 years. Volumetric data for the amygdala, hippocampus, basal ganglia, and cerebral ventricles were harmonized across sites using the ComBat algorithm. Following this, volumetric composite indices (principal component scores) were extracted for each region using principal component analysis. These scores represent dominant volumetric patterns of each subcortical region, with higher values reflecting greater volume. These composite scores were then compared between groups and with increasing age. RESULTS: Autistic participants exhibited greater amygdala volume in early life, followed by more pronounced age-associated reductions in adulthood compared to neurotypical controls. A similar trend was observed for the hippocampus, with early volumetric enlargement giving way to steeper declines in later years. In contrast, the autistic group consistently trended towards larger basal ganglia across the lifespan. Additionally, autistic participants showed accelerated enlargement in the cerebral ventricles with increasing age. Both groups exhibited patterns of inverse volumetric associations between the cerebral ventricles and surrounding subcortical regions in later adulthood; however, these relationships were more pronounced and widely distributed in the autistic group. LIMITATIONS: The cross-sectional design of this study limited us from capturing intra-individual differences at baseline and quantifying the lifespan trajectories of each participant. Site-related sampling differences may have introduced cohort bias in the results. CONCLUSIONS: Autistic participants and neurotypical controls exhibit distinct, age-related volumetric patterns across key subcortical brain regions. Enlargement of the cerebral ventricles and their inverse structural relationships with neighboring structures in later life may indicate atrophic processes beginning in middle adulthood in ASD. These findings highlight the need to further investigate mechanisms of atypical brain aging in ASD and consider these subcortical brain regions as potential biomarkers of neurodegeneration and intervention targets across the adult lifespan. En ligne : https://dx.doi.org/10.1186/s13229-025-00673-1 Permalink : https://www.cra-rhone-alpes.org/cid/opac_css/index.php?lvl=notice_display&id=569

